Spelling suggestions: "subject:"angeregter 2zustand"" "subject:"angeregter randzustand""
1 |
Excited state dynamics in fluorescent proteins (GFP, RFP) and flavoproteinsSchüttrigkeit, Tanja Angela. January 2004 (has links) (PDF)
München, Techn. Univ., Diss., 2004.
|
2 |
Tracing Excited-State Photochemistry by Multidimensional Electronic Spectroscopy / Auflösung der Photochemie von angeregten Zuständen mittels multidimensionaler elektronischer SpektroskopieKullmann, Martin Armin January 2013 (has links) (PDF)
Light-induced excitation of matter proceeds within femtoseconds, resulting in excited states. Originating from these states chemical reaction mechanisms, like isomerization or bond formation, set in. Photophysical mechanisms like energy distribution and excitonic delocalization also occur. Thus, the reaction scheme has to be disentangled by assessing the importance of each process. Spectroscopic methods based on fs laser pulses have emerged as a versatile tool to study these reactions. Within this thesis time-resolved experiments with fs laser pulses on various molecular systems were performed. Novel photosystems, with possible applications ranging from ultrathin molecular wires to molecular switches, were extensively characterized. To resolve the complex kinetics of the investigated systems, time-resolved techniques had to be newly developed. By combining a visible excitation pulse pair with an additional pulse and a continuum probe electronic triggered-exchange two-dimensional spectroscopy (TE2D) was demonstrated for the first time. This goal was accomplished by combining a three-color transient-absorption setup with a pulse shaper. Hence, 2D spectroscopy with a continuum probe was also implemented. Using these methods two different molecular systems in solution were characterized in a comprehensive manner. (ZnTPP)2, a directly beta,beta’-linked Zn-metallated bisporphyrin, and a spiropyran-merocyanine photosystem, 6,8-dinitro BIPS, were characterized. (ZnTPP)2 is a homodimer, featuring strong excitonic effects. These manifest themselves in a twofold splitting of the Soret band (S2). 6,8-Dinitro BIPS exists in one of two possible conformations. The ring closed spiropyran absorbs only in the UV, while the ring open merocyanine also absorbs in the visible. For both molecular systems photodynamics upon illumination were monitored using transient-absorption. However, the obtained results were ambiguous, necessitating more complex methods. In the case of (ZnTPP)2 first the monomeric building block was characterized. There, population transfer from the S2 state into S1 within 2 ps was identified. Afterwards, intersystem crossing proceeds within 2 ns. For (ZnTPP)2 similar pathways were found, albeit the relaxation is faster. The intersystem crossing with 1.5 ns was not only indirectly deduced but directly measured by probing in the NIR spectral range. The excitonic influence of was investigated by coherent 2D spectroscopy in the Soret band. Population transfer within S2 was directly visualized on a time-scale of 100 fs. Calculation of the 2D spectra of a simple homodimer confirmed the results. After this analysis of the distinct excitonic character, this molecule may serve as a building block for larger porphyrin arrays with applications ranging from asymmetric catalysis over biomimicry of electron-transfer to organic optical devices. The second photosystem was the molecular switch 6,8-dinitro BIPS, existing in two conformations. Merocyanine is the more stable form in thermal equilibrium. Transient-absorption measurements uncovered that the sample consisted of a mixture of two merocyanine isomers, referred to as TTC and TTT. However, both isomers are capable of ring-closure forming spiropyran. The remaining excited molecules return to the ground state radiatively. Conducting 2D measurements utilizing a continuum probe the differing photochemistry of both isomers was examined in a single measurement. No isomerization between these conformations was detected. Therefore, 6,8-dinitro BIPS performs a concerted switching without long-living intermediates. This was confirmed by a pump-repump-probe scan. 6,8-DinitroBIPS can be closed by visible and opened by UV pulses using subsequent pulses and vice versa. These mechanisms via singlet pathways satisfy an important criterion for a unimolecular switching device. A second pump-repump-probe experiment showed that the sample is ionized, resulting in a merocyanine radical cation, when the first excited state is resonantly excited. Furthermore, by implementing TE2Dspectroscopy, it was elucidated that only TTC was ionized. Taking all this into account new techniques were developed and complex molecular systems were characterized within this thesis. Deeper insight into the photodynamics of (ZnTPP)2and 6,8-dinitro BIPS was gained by adapting transient absorption for the NIR spectral range, constructing a 2D setup in pump-probe geometry, and combining it with multipulse excitation to coherent TE2D. All techniques solved the questions for which they were constructed, but they are not limited to these cases. Especially TE2D opens new roads in photochemistry. By connecting reactant, product and the corresponding intermediates, a chemical reaction can be tracked through all stages, making unambiguous identification of the reactive states feasible. Thus, fundamental insight into the photochemistry of molecular compounds is gained. / Über Lichtanregung erreichen Moleküle innerhalb von Femtosekunden angeregte Zustände. Aus diesen können photochemische Reaktionen wie Isomerisierungen einsetzen. Zusätzlich treten photophysikalische Effekte wie exzitonische Delokalisierungen auf. Daher ist es wichtig, die auftretenden Relaxationspfade zu analysieren um das Reaktionsschema des Systems zu erhalten. Ultrakurzzeitspektroskopie mit Femtosekundenlaserpulsen hat sich als nützliches Werkzeug erwiesen um lichtinduzierte Reaktionen auf ihrer intrinsischen Zeitskala zu studieren. In dieser Arbeit sind zeitaufgelöste Experimente an unterschiedlichen Verbindungen durchgeführt worden. Einerseits wurden neuartige Molekülklassen umfassend photodynamisch untersucht. Andererseits sind neue breitbandige Spektroskopiemethoden entwickelt worden. Durch die Kombination eines Anregungspulspaars mit einem weiteren Laserpuls sowie einem Weißlichtkontinuum wurde zum ersten Mal elektronische zweidimensionale Spektroskopie mit ausgelöster Umwandlung ("triggered-exchange 2D“, TE2D) demonstriert. Dies war durch die Implementierung eines Pulsformers in ein transientes Absorptionsspektrometer möglich. In einem ersten Experiment wurde die prinzipielle Eignung des Aufbaus getestet indem 2D Spektroskopie mit Weißlichtabfrage implementiert wurde. Diese Methoden wurden dazu genutzt zwei verschiedene Verbindungen zu untersuchen, ein direkt beta,beta'-verknüpftes, Zn-metalliertes Bisporphyrin [(ZnTPP)2] und ein Spiropyran-Merocyanin Photoschalter (6,8-dinitro BIPS). (ZnTPP)2 ist ein Homodimer, in welchem sich starke exzitonische Einflüsse, z. B. das Aufspalten der Soret-Bande (S2), zeigen. 6,8-Dinitro BIPS hingegen besteht aus zwei Konformeren. Zum einen liegt das nur im UV absorbierende Spiropyran vor. Das zweite Konformer ist Merocyanin, welches zusätzlich im sichtbaren absorbiert. Zuerst sind die Relaxationsdynamiken beider Moleküle mittels transienter Absorption untersucht worden. Allerdings waren die Resultate nicht eindeutig, so dass im Anschluss komplexere Messmethoden angewandt wurden. Für das Studium des Bisporphyrins (ZnTPP)2 wurde das zugehörige Monomer untersucht. Nach Anregung relaxiert die Population aus dem S2 in den S1 Zustand. Anschließend tritt Intersystem Crossing in T1 ein. Für das Dimer selbst ergaben sich die gleichen Reaktionswege. Das Intersystem Crossing wurde nicht nur abgeleitet, sondern durch Abfrage im nahinfraroten Spektralbereich direkt gemessen. Der Einfluss der Exzitonen auf das Bisporphyrin wurde durch kohärente 2D Spektroskopie innerhalb der Soret-Bande untersucht. Dies ermöglichte die Visualisierung von Populationstransfer innerhalb von 100 fs. Eine Berechnung der 2D Spektren eines einfachen Homodimers unterstützt dieses Resultat. Indem die hier vorgestellten Ergebnisse genutzt werden, könnte (ZnTPP)2 als Baustein für Porphyrinsysteme dienen. Deren denkbare Anwendungen reichen von asymmetrischer Katalyse über die Nachahmung von biologischem Elektronentransfer hinzu organo-optischen Geräten. Das zweite untersuchte System war der molekulare Schalter 6,8-dinitro BIPS mit Merocyanin als stabile Form im thermischen Gleichgewicht. Transiente Absorptionsmessungen deckten auf, dass die Lösung aus zwei Merocyanin-Isomeren besteht (TTC oder TTT). Es ergab sich ebenso, dass beide eine elektrozyklische Ringschlussreaktion zum Spiropyran durchführen. Mittels eines 2D Spektrums konnte die unterschiedliche Photochemie beider Isomere innerhalb einer einzigen Messung aufgezeigt werden. Zusätzlich wurde keine Isomerisierung zwischen ihnen beobachtet. Damit steht fest, dass 6,8-dinitro BIPS eine konzertierte Reaktion zum Spiropyran durchführt. Der direkte Schaltvorgang wurde eindeutig über Anrege-Wiederanrege-Abfrage Spektroskopie nachgewiesen. Hierfür wurde 6,8-dinitro BIPS mit sichtbarem gefolgt von ultraviolettem Licht bestrahlt. Der resultierende zweifache Schaltvorgang ist ein wichtiges Kriterium für einen Photoschalter. Ein ähnliches Experiment zeigte, dass 6,8-dinitro BIPS ionisiert wird, wenn die angeregte Population resonant bestrahlt wird. Das neugebildete langlebige Produkt konnte einem Kation zugeordnet werden. Durch die Verwendung der neuen elektronischen TE2D Methode ist aufgezeigt worden, dass lediglich TTC ionisiert werden kann. Zusammengefasst gilt, dass sowohl Fortschritte in der Methodenentwicklung als auch in der Charakterisierung von Verbindungen erzielt wurden. Ein tieferes Verständnis über die Dynamiken des Bisporphyrins (ZnTPP)2 und des molekularen Schalters 6,8-dinitro BIPS wurden durch Erweiterungen an einem transienten Absorptionsspektrometers, den Aufbau eines 2D Spektrometers in Anrege-Abfrage-Geometrie und durch die Kombination von letzterem mit Mehrfachanregung zu TE2D Spektroskopie gewonnen. Insbesondere letztere eröffnet neue Möglichkeiten in der Photochemie, da Edukte, Produkte und die zugehörigen Zwischenzustände miteinander verknüpft werden, wodurch lichtinduzierte Reaktionen schrittweise nachvollzogen werden können.
|
3 |
Quantum chemical description of ultrafast exciton self-trapping in perylene based materials / Quanten-chemische Beschreibung von ultraschnellem Self-trapping von Exzitonen in Perylen-basierten MaterialienSettels, Volker January 2012 (has links) (PDF)
Im Rahmen dieser Dissertation wurden sehr lange Exzitonen-Diffusionslängen (LD) unter idealen Bedingungen für Perylen-basierte Materialien simuliert. Dies ist ein Indiz dafür, dass die sehr kurzen LD in realen Materialien aus einer extrinsischen sowie einer intrinsischen Immobilisierung resultieren. Letztere basiert auf einer Relaxation in sogenannten „Self-Trapping“-Zustände. Ein tieferes Verständnis der dem Self-Trapping zugrunde liegenden atomistischen Prozesse ist notwendig, um zukünftig Materialien mit langen LD entwickeln zu können, bei denen eine intrinsische Exzitonen-Immobilisierung verhindert wird. Für die Entwicklung eines solchen mechanistischen Verständnisses ist das Vorliegen einer eindeutigen Korrelation zwischen der molekularen Anordnung und der LD unabdingbar. Diese weisen Einkristalle von Diindenoperylen (DIP) und α-Perylen-tetracarboxyl-anhydrid (α-PTCDA) auf. Bei ersteren wurde eine außergewöhnlich lange LD von 90 nm und bei letzteren nur 22 nm gemessen. Teil dieser Arbeit war es, Gründe für diesen Unterschied in der LD zu finden. Nur Self-Trapping kommt als Ursache in Frage. Aus diesem Grund eignen sich diese Materialien, um ein atomistisches Verständnis des Self-Trappings exemplarisch an ihnen zu erarbeiten. Mutmaßlich könnten Differenzen in der elektronischen Struktur in DIP und α-PTCDA für das unterschiedliche Self-Trapping verantwortlich sein. Allerdings konnte gezeigt werden, dass es für viele Perylen-basierte Materialien keine signifikanten Unterschiede in der elektronischen Struktur gibt, wodurch diese für die Aufklärung von Immobilisierungsmechanismen zu vernachlässigen sind. Eine weitere mögliche Begründung wäre in Polarisationseffekten im Kristall zu suchen, welche die elektronische Struktur in Perylen-basierten Materialien unterschiedlich beeinflussen. Vor allem ihr Einfluss auf Ladungstrennungs-Zustände (CT), die oberhalb des optisch hellen Frenkel-Zustandes liegen, war fraglich, weil sie energetisch abgesenkt werden könnten. Ein signifikanter Einfluss von Polarisationseffekten konnte aber für alle Zustände mittels eines polarisierbaren Kontinuum-Modells ausgeschlossen werden. Die geringe LD im α-PTCDA ist folglich ein Indiz für ein Self-Trapping, das durch die Kristallstruktur aus π-Stapeln evoziert wird, welche in DIP fischgrätenartig ist. Da Polarisationseffekte auszuschließen sind, übt der Kristall lediglich durch sterische Restriktionen einen Einfluss auf das Dimer aus. Daher muss die Methode für die Beschreibung von Self-Trapping nur diese Effekte berücksichtigen, so dass sich für den Einsatz des mechanical embedding QM/MM-Ansatzes entschieden wurde. Nun konnten Potentialflächen berechnet werden, auf denen anschließend eine Wellenpaketdynamik durchgeführt wurde. Diese Methode erlaubt es erstmals, Mechanismen der Exzitonen-Immobilisierung in organischen Materialien auf einer atomistischen Ebene zu beschreiben. Als Erklärung für Self-Trapping in α-PTCDA dienten Potentialflächen, die eine intermolekulare Verschiebung des Dimers im Kristall abbilden. So wurde eine Exzitonen-Immobilisierung innerhalb von 500 fs gefunden, die aus einem irreversiblem Energieverlust und einer lokalen Verzerrung der Kristallstruktur resultiert und auf diese Weise den weiteren Transport des Exzitons verhindert. Im Fall von DIP kann diese Immobilisierung aufgrund hoher Energiebarrieren nicht stattfinden. Diese Barrieren resultieren aus der fischgrätenartigen Kristallstruktur des DIP. Diese Diskrepanzen in der Dynamik erklären die unterschiedlichen LD-Werte für DIP und α-PTCDA. In einem weiteren Fall wurde eine Exzitonen-Immobilisierung in helikalen π Aggregaten von Perylen-tetracarboxyl-bisimid (PBI) Molekülen festgestellt. Hier wird Self-Trapping durch einen Relaxationsmechanismus verursacht, in dem das Exziton durch geringe asymmetrische Schwingungen des Aggregats innerhalb von 200 fs von dem hellen Frenkel- in den dunklen Frenkel-Zustand transferiert wird, wobei dieser Übergang von einem CT-Zustand vermittelt wird. Der gesamte Vorgang ist nur bei helikalen Aggregaten möglich, weil nur hier CT-Zustände sehr dicht bei dem hellen Frenkel-Zustand vorhanden sind. Im finalen Frenkel-Zustand tritt eine Torsionsbewegung um die π-Stapelachse ein, so dass ein Energieverlust und eine lokale Änderung der Aggregatstruktur erfolgt – also ein Self-Trapping des Exzitons. Dieser modellierte Mechanismus steht im Einklang zu allen vorliegenden experimentellen Daten. Diese Erkenntnisse lassen die Schlussfolgerung zu, dass in künftigen Materialen für organische Solarzellen eine irreversible und ultraschnelle Deformation des Aggregats nach der Photoanregung vermieden werden muss - will man lange LD erreichen. Nur so kann Self-Trapping von Exzitonen verhindert werden. / In the context of this dissertation very long ranged exciton diffusion lengths (LD) were simulated for perylene-based materials under ideal conditions. This leads to the conclusion that the short LD values in existing materials result from an extrinsic and intrinsic immobilization. The latter, which is a specific material property, is based on a relaxation of the exciton into self-trapping states. An in-depth understanding of the atomistic processes defining self-trapping is essential to developing materials with long LD in the future, in which intrinsic immobilization is prevented. For the development of such a mechanistic understanding it is crucial that a clear relationship between molecular structure and LD is available. This is given by single crystals of diindeno perylene (DIP) and α-perylene tetracarboxylic anhydride (α-PTCDA). An extraordinary large LD of 90 nm was measured for the first one, while the latter possesses only 22 nm. Part of this thesis was to deliver reasons for this discrepancy. Only self-trapping comes into question to explain the different LD values. One reason for the different self-trapping in DIP and α-PTCDA could lie in the electronic structure. However, it was possible to demonstrate that a wide range of perylene-based materials possess no significant differences in their electronic structures. Consequently, such differences can be neglected for the explanation of immobilization mechanisms for the exciton. A further possible explanation could be polarization effects in the crystal, which influences the electronic structure of perylene based materials differently. Especially their influence on charge transfer (CT) states, which are located above the optically bright Frenkel state, was in question because such states could be stabilized by a polarizable surrounding. A significant influence of polarization effects on all considered states were excluded by using a polarizable continuum model. Hence, the small LD values in α-PTCDA are an evidence for self-trapping, which produces a crystal structure built up by π-stacks, while the one of DIP is of herringbone type. Since polarization effects can be neglected, is the dimer only via steric restrictions influenced by the crystal. Hence, a method describing self-trapping has to consider such effects, so that a mechanical embedding QM/MM approach is sufficient. Now, potential energy surfaces were calculated, on which wave packet dynamics were subsequently performed. In this way, atomistic mechanisms for the immobilization of excitons were described for the first time in organic materials. Self-trapping was studied in crystals of α-PTCDA by potential energy surfaces, which map an intermolecular shift motion of the dimer in the crystal. An immobilization of excitons occurs within 500 fs, which results from an irreversible energy loss together with a local deformation of the crystal lattice. This prevents a further transport of the exciton. In the case of DIP, this immobilization does not proceed due to high barriers. These barriers result from the herringbone type packing motif in the DIP crystal. This discrepancy in the dynamics explains the different LD values in DIP and α-PTCDA. In a further example, an exciton immobilization was found in helical π-aggregates of perylene tetracarboxylic bisimide (PBI) molecules. Self-trapping is caused by a relaxation mechanism, in which the exciton is transferred by asymmetric vibrations of the aggregate from the bright to a dark Frenkel state within 200 fs, whereby the transition is mediated by a CT state. However, the CT state is almost non-populated during the whole mechanism so that its participation could not yet be proven experimentally. This entire procedure is solely possible in helical aggregates, because only for such structures is there a CT state located next to the bright Frenkel state. At the final Frenkel state a torsional motion around the π-stacking axis is possible so that the loss in energy and the local rearrangement of the aggregate structure occurs, which means a self-trapping of the exciton. This mechanism is in perfect agreement with all available experimental data. These insights allow the conclusion that in future materials for organic solar cells an irreversible and ultrafast deformation of aggregates after photo-absorption must be avoided. Only in this way long LD values can be achieved and exciton self-trapping can be prevented. However, small LD values are always predicted in helical aggregates of perylene-based materials, because exciton immobilization occurs already due to small molecular motions. For this reason such aggregates are inappropriate for the use in organic solar cells. Long LD values are expected for aggregate structures with long intermolecular shifts or molecules with bulky substituents.
|
4 |
Excitonic States and Optoelectronic Properties of Organic Semiconductors - A Quantum-Chemical Study Focusing on Merocyanines and Perylene-Based Dyes Including the Influence of the Environment / Exzitonische Zustände und optoelektronische Eigenschaften organischer Halbleiter – Eine quantenchemische Untersuchung mit Fokus auf Merocyaninen und perylenbasierten Farbstoffen unter Berücksichtigung der UmgebungWalter, Christof January 2015 (has links) (PDF)
The scope of computational chemistry can be broadened by developing new methods and more efficient algorithms. However, the evaluation of the applicability of the methods for the different fields of chemistry is equally important. In this thesis systems with an unusual and complex electronic structure, such as excitonic states in organic semiconductors, a boron-containing bipolaron and the excited states of pyracene were studied and the applicability of the toolkit of computational chemistry was investigated. Concerning the organic semiconductors the focus was laid on organic solar cells, which are one of the most promising technologies with regard to satisfying the world's need for cheap and environmentally sustainable energy. This is due to the low production and material costs and the possibility of using flexible and transparent devices. However, their efficiency does still not live up to the expectations. Especially the exciton diffusion lengths seem to be significantly too short. In order to arrive at improved modules, a fundamental understanding of the elementary processes occurring in the cell on the molecular and supramolecular level is needed. Computational chemistry can provide insight by separating the different effects and providing models for predictions and prescreenings. In this thesis, the focus was laid on the description of excitonic states in merocyanines and perylene-based dyes taking the influence of the environment into account.
At first, the photochemical isomerization between two configurations of 6-nitro BIPS observed experimentally was studied by first benchmarking several functionals against SCS-ADC(2) in the gas phase and subsequently calculating the excited-state potential energy surface. The geometries obtained from a relaxed scan in the ground state as well as from a scan in the excited state were used. The environment was included using different polarizable continuum models. It was shown that the choice of the model and especially the question of the state specificity of the approach is of vital importance. Using the results of the calculations, a two-dimensional potential energy surface could be constructed that could be used to explain the experimental findings. Furthermore, the importance of the excited-state isomerization as a potential deactivation channel in the exciton transport was pointed out.
Then the assessment of the suitability of different merocyanines for optoelectronic applications with quantum-chemical methods was discussed. At first, the effect of the environment on the geometry, especially on the bond length alternation pattern, was investigated. It was shown that the environment changes the character of the ground-state wave function of several merocyanines qualitatively, which means that the results of gas-phase calculations are meaningless - at least when a comparison with solution or device data is desired. It was demonstrated that using a polarizable continuum model with an effective epsilon, a qualitative agreement between the calculated geometry and the geometry in the crystal structure can be obtained. Therefore, by comparing the bond length alternation in solution and in the crystal, a rough estimate of the effect of the crystal environment can be made.
It was further shown that the connection between the HOMO energy and the open-circuit voltage is not as simple as it is often implied in the literature. It was discussed that it is not clear whether the HOMO of a single molecule or a $\pi$-stack containing several monomers should be used and if the environmental charges of the bulk phase or the interface should be included. Investigating the dependence of the HOMO energy on the stack size yielded no definitive trend. Furthermore, it was discussed that the effect due the optimization of the modules (solvent, bulk heterojunction) during the production masks any potential correlation between the HOMO energy and measured open-circuit values. Therefore, a trend can only be expected for unoptimized bilayer cells. It was concluded that ultimately, the importance of the HOMO energy should not be overestimated.
The correlation between the exciton reorganization energy and the so-called cyanine limit, which is predicted by a simple two-state model, was also discussed. By referring to the results of VB calculations, it was discussed that the correlation indeed exists and is non-negligible, although the effect is not as strong as one might have expected. In this context, a potential application of a VB/MM approach was covered briefly. The importance of the molecular reorganization energy and the device morphology was also discussed.
It was concluded that the optimization of merocyanines for organic optoelectronic devices is inherently a multiparameter problem and one cannot expect to find one particular parameter, which solely controls the efficiency.
The perylene-based dyes were studied with a focus on the description of a potential trapping mechanism involving an intermolecular motion in a dimer. The aim was to find methods which can be applied to larger model systems than a dimer and take the effect of the environment into account. As a test coordinate the longitudinal shift of two monomers against each other was used. At first, it was demonstrated how the character of an excited state in a dimer can be defined and how it can be extracted from a standard quantum-chemical calculation. Then several functionals were benchmarked and their applicability or failure was rationalized using the character analysis. Two recipes could be proposed, which were applied to a constraint optimization (only intermolecular degrees of freedom) in the excited states of the PBI dimer and to the description of the potential energy surfaces of ground and excited states along a longitudinal displacement in the perylene tetramer, respectively.
It was further demonstrated that the semi-empirical OMx methods fail to give an accurate description of the excited-state potential energy surfaces as well as the ground-state surface along the test coordinate. This failure could be attributed to an underestimation of overlap-dependent terms. Consequently, it could be shown that the methods are applicable to large intermolecular distances, where the overlap is negligible. The results of DFT calculations with differently composed basis sets suggested that adding an additional single p-function for each atom should significantly improve the performance.
QM/MM methods are ideally suited to take the effect of the environment on a a dimer model system into account. However, it was shown that standard force fields also give an incorrect description of the interaction between the monomers along the intermolecular coordinate. This failure was attributed to the isotropic atom-atom interaction in the repulsion term of the Lennard-Jones potential. This was corroborated using two simple proof-of-principle anisotropy models. Therefore, a novel force field called OPLS-AA_O was presented that is based on OPLS-AA, but uses an anisotropic model for the repulsion. The model involves the overlap integral between the molecular densities, which are modeled as a sum of atom-centered p-type Gaussian functions. It was shown that using this force field an excellent agreement with the DFT results can be obtained when the correct parameters are used. These parameters, however, are not very generalizable, which was attributed to the simplicity of the model in its current state (using the same exponential parameter for all atoms). As a short excursion, the applicability of an MO-based overlap model was discussed.
It was demonstrated that the repulsion term based on the density overlap can be used to correct the failure of the OMx methods for the ground states. This is in accord with the assumption that an underestimation of the overlap terms is responsible for the failure.
It was shown that OPLS-AA_O also gives an excellent description of the longitudinal shift in a PBI tetramer. Using the tetramer as a test system and applying the recipe obtained in the TDDFT benchmark for the QM-part and OPLS-AA_O for the MM-part in conjunction with an electrostatic embedding scheme, a QM/MM description of the excited states of the PBI dimer including the effect of the environment could be obtained.
In the last chapter the theoretical description of the Bis(borolyl)thiophene dianion and the excited states of pyracene were discussed. The electronic structure of the Bis(borolyl)thiophene dianion - a negative bipolaron - was elucidated using DFT and CASPT2 methods. Furthermore, an estimation of the extent of triplet admixture to the ground state due to spin-orbit coupling was given.
In the second project the S1 and S2 states of pyracene were computed using SCS-CC2 and SCS-ADC(2) and an estimation for the balance between aromaticity and ring strain was given. This also involved computing the vibrational frequencies in the excited states.
In both studies the results of the computations were able to rationalize and complete experimental results. / Die Anwendungsmöglichkeiten der Methoden der theoretischen Chemie können erweitert werden, indem neue Methoden und effizientere Algorithmen entwickelt werden. Es ist jedoch ebenso wichtig die Anwendbarkeit der Methoden für die verschiedenen Felder der Chemie zu evaluieren. In dieser Arbeit wurden Systeme mit einer komplexen und ungewöhnlichen Struktur, wie exzitonische Zustände in organischen Halbleitern, ein bor-basiertes Bipolaron und die angeregten Zustände von Pyracen untersucht und die Anwendbarkeit der verschiedenen Methoden evaluiert. Im Bezug auf die organischen Halbleiter wurde der Fokus auf organische Solarzellen gelegt, welche zu den vielversprechendsten Technologien gehören, um dem weltweiten Bedarf an billiger und ökologisch nachhaltiger Energie zu begegnen. Dies liegt an den niedrigen Produktionskosten und der Möglichkeit flexible und transparente Module zu verwenden. Ihre Wirkungsgrade werden den Erwartungen jedoch noch nicht gerecht. Vor allem die Exzitonendiffusionslängen scheinen deutlich zu gering zu sein. Um verbesserte Module zu erhalten ist ein fundamentales Verständnis der Elementarprozesse in der Zelle auf molekularem und supramolekularem Level vonnöten. Die theoretische Chemie kann dabei helfen dies zu erreichen, indem sie die verschiedenen Effekte separiert und Modelle für Vorhersagen und zur Vorauswahl geeigneter Verbindungen bereitstellt. In dieser Arbeit wurde der Fokus auf die Beschreibung von exzitonischen Zuständen in Merocyaninen und perylenbasierten Farbstoffen unter Berücksichtigung von Umgebungseinflüssen gelegt.
Zunächst wurde die experimentell beobachtete photochemische Isomerisierung zwischen zwei Konfigurationen von 6-nitro BIPS untersucht, indem zuerst die Anwendbarkeit verschiedener Funktionale im Vergleich zu SCS-ADC(2) in der Gasphase überprüft wurde und anschließend die Potentialfläche des angeregten Zustands berechnet wurde. Es wurden sowohl die Geometrien aus einem relaxed scan im Grundzustand als auch von einem scan im angeregten Zustand verwendet. Umgebungseffekte wurden unter Verwendung verschiedener Kontinuumsansätze (polarizable continuum models) berücksichtigt. Es konnte gezeigt werden, dass die Wahl des Ansatzes und vor allem die Frage nach der Zustandsspezifizität des Kontinuumsansätze sehr entscheidend ist. Mit den Ergebnissen der Berechnungen konnte eine zweidimensionale Potenzialfläche konstruiert werden, mittels welcher die experimentellen Beobachtungen erklärt werden konnten. Außerdem wurde auf die Bedeutung der Isomerisierung im angeregten Zustand als einem potenziellen Deaktivierungskanal für den Exzitonentransport hingewiesen.
Anschließend wurde die Möglichkeit einer Bewertung der Eignung verschiedener Merocyanine für optoelektonische Fragestellungen mit quantenchemischen Methoden diskutiert. Zunächst wurde der Einfluss der Umgebung auf die Geometrie und insbesondere auf die Bindungslängenalternanz untersucht. Es wurde gezeigt, dass die Umgebung die Wellenfunktion mehrerer Merocyanine qualitativ verändert, was bedeutet, dass Berechnungen in der Gasphase keinen Sinn machen - zumindest nicht, wenn die Ergebnisse mit Daten, die in Lösung oder in der Zelle erhalten wurden, verglichen werden sollen.
Es konnte gezeigt werden, dass unter Verwendung eines Kontinuumsansatzes mit einer effektiven Dielektrizitätskonstante epsilon eine qualitative Übereinstimmung zwischen der berechneten Geometrie und der Geometrie in der Kristallstruktur erzielt werden kann. Dies ermöglicht es, durch einen Vergleich der Bindungslängenalternanz in Lösung und im Kristall eine grobe Abschätzung für den Einfluss der Kristallumgebung zu erhalten.
Es wurde außerdem dargelegt, dass der Zusammenhang zwischen der Energie des HOMOs und der Leerlaufspannung nicht so eindeutig ist, wie es oft in der Literatur suggeriert wird. Es stellte sich die Frage, ob die HOMO-Energie eines einzelnen Moleküls oder eines Stapels bestehend aus mehreren Monomeren verwendet werden sollte und ob der Umgebungseffekt der Ladungen der Bulkphase oder der Grenzfläche berücksichtigt werden sollte. Die Untersuchung der Abhängigkeit der HOMO-Energie von der Anzahl der Monomere ergab keinen klaren Trend. Die Tatsache, dass die Optimierung des Moduls während des Produktionsprozesses (Solvent, Bulk-Hereojunction-Konzept) eine potenzielle Korrelation zwischen der HOMO-Energie und der Leerlaufspannung maskiert, wurde ebenfalls diskutiert. Deshalb kann eine Korrelation nur für nicht optimierte Zweischichtzellen erwartet werden. Es wurde der Schluss gezogen, dass die Bedeutung der HOMO-Energie letztendlich nicht überbewertet werden sollte.
Der Zusammenhang zwischen der Exzitonenreorganisationsenergie und dem sogenannten Cyaninlimit, welcher von einem einfachen Zwei-Zustands-Model vorhergesagt wird wurde diskutiert. Unter Verweis auf die Ergebnisse von VB-Berechnungen konnte diskutiert werden, dass der Zusammenhang in der Tat existiert und nicht vernachlässigbar, aber auch nicht so groß ist, wie man vermutet haben könnte. In diesem Kontext wurde die potenzielle Anwendbarkeit eines VB/MM-Ansatzes kurz besprochen. Die Bedeutung der molekularen Reorganisationsenergie und der Morphologie der Zelle wurden ebenfalls diskutiert. Es wurde das Fazit gezogen, dass die Optimierung der Merocyanine für die Anwendung in organischen Halbleitern inhärent ein Multiparameterproblem ist und man nicht erwarten kann, einen einzelnen Parameter zu finden, der allein die Effizienz kontrolliert.
Die perylenbasierten Farbstoffe wurden mit dem Fokus auf der Beschreibung eines potenziellen Exzitoneneinfangmechanismus, untersucht, welcher auf der intermolekularen Bewegung in einem Dimer basiert. Das Ziel war es Methoden zu finden, die auf größere Systeme anwendbar sind und den Umgebungseinfluss berücksichtigen können. Als Testkoordinate wurde die longitudinale Verschiebung der Monomere gegeneinander verwendet. Zunächst wurde gezeigt, wie der Charakter eines angeregten Zustandes in einem Dimer definiert werden kann und wie ein Maß für den Charakter ausgehend von einer normalen quantenchemischen Berechnung erhalten werden kann. Anschließend wurden verschiedene Funktionale evaluiert und ihre Anwendbarkeit beziehungsweise ihr Versagen mittels der Charakteranalyse rationalisiert. Zwei Ansätze konnten vorgeschlagen werden, welche auf eine Optimierung in den angeregten Zustände des Dimers mit Nebenbedingung (nur intermolekulare Freiheitsgrade) beziehungsweise auf eine Beschreibung der Potenzialflächen des Grundzustandes und der angeregten Zustände für die longitudinale Verschiebung in einem Perylentetramer angewendet wurden.
Es wurde außerdem gezeigt, dass die semiempirischen OMx Methoden keine akkurate Beschreibung der Potenzialflächen der angeregten Zustände sowie des Grundzustandes für die Testkoordinate liefern. Dies konnte mit der Unterschätzung der intermolekularen Überlappterme begründet werden. Folglich war es möglich zu zeigen, dass die Methoden für intermolekulare Abstände, bei denen der Überlapp vernachlässigbar ist, anwendbar sind. Die Ergebnisse von DFT-Rechnungen mit unterschiedlich zusammengesetzten Basissätzen ließen ferner den Schluss zu, dass das Hinzufügen einer einzelnen p-Funktion an jedem Atom eine deutliche Verbesserung bringen sollte.
QM/MM-Methoden sind ideal geeignet, um den Einfluss der Umgebung auf ein Dimer-Modellsystem zu berücksichtigen. Es wurde jedoch gezeigt, dass gängige Kraftfelder ebenfalls eine inkorrekte Beschreibung der Wechselwirkung zwischen den Monomeren entlang der intermolekularen Koordinate liefern. Dies wurde mit der isotropen Beschreibung der Atom-Atom-Wechselwirkung im Repulsionsterm des Lennard-Jones-Potenzials begründet. Diese Annahme wurde durch die Anwendung zweier Proof-of-Principle-Ansätze untermauert. Folglich wurde ein neues Kraftfeld, genannt OPLS-AA_O, eingeführt, welches auf OPLS-AA basiert, aber eine anisotrope Modellierung der Repulsion verwendet. Diese anisotrope Repulsion basiert auf dem Überlappintegral der molekularen Elektronendichten, welche als Summe aus atomzentrierten p-artigen Gaußfunktionen modelliert wird. Es wurde gezeigt, dass mit diesem Kraftfeld eine hervorragende Übereinstimmung mit den DFT-Ergebnissen erhalten werden kann, wenn die richtigen Parameter verwendet werden. Diese Parameter sind jedoch nicht sehr generalisierbar, was mit der Einfachheit des Models zu seinem momentanen Stand begründet wurde (Verwendung desselben Parameters im Exponenten bei allen Atomen). Als kurzer Exkurs wurde die Anwendbarkeit eines MO-basierten Überlappmodells diskutiert.
Es konnte nachgewiesen werden, dass der Repulsionsterm, der auf der Dichteüberlappung basiert, auch als Korrekturterm für die Anwendbarkeit der OMx-Methoden bezüglich des Grundzustandes verwendet werden kann. Dies deckt sich mit der Annahme, dass eine Unterschätzung von Überlapptermen für das Versagen der semiempirischen Methoden verantwortlich ist.
Es wurde gezeigt, dass OPLS-AA_O die Potenzialfläche für die longitudinale Verschiebung in einem PBI Tetramer exzellent beschriebt. Unter Verwendung des Tetramers als Testsytem und unter Anwendung eines der vorgeschlagenen TDDFT-Ansätze für den QM-Teil und OPLS-AA_O für den MM-Teil in Verbindung mit einem electrostatic embedding-Ansatz konnte eine QM/MM-Beschreibung der angeregten Zustände des PBI Dimers unter Berücksichtigung des Umgebungseinfluss erhalten werden.
Im letzten Kapitel wurde die theoretische Beschreibung des Bis(borolyl)thiophendianions und von Pyracen diskutiert. Die elektronische Struktur des Bis(borolyl)thiophendianions wurde beschrieben unter Verwendung von DFT- und CASPT2-Methoden. Außerdem wurde eine Abschätzung des Ausmaßes der Triplettbeimischung zum Grundzustand durch die Spin-Bahn-Kopplung gegeben.
Im zweiten Projekt wurden der S1- und S2- Zustand des Pyracens unter Verwendung von SCS-CC2 und SCS-ADC(2) berechnet und eine Abschätzung des Verhältnisses von Aromatizität und Ringspannung gegeben. Dies beinhaltete auch die Berechnung der Schwingungsfrequenzen im angeregten Zustand.
In beiden Studien konnten die Ergebnisse der Berechnungen die experimentellen Daten vervollständigen und rationalisieren.
|
5 |
Deaktivierungsprozesse in isolierten aromatischen Heterocyclen und Pyrenen / Deactivation processes in isolated aromatic heterocycles and pyrenesSchmitt, Hans-Christian January 2017 (has links) (PDF)
In der vorliegenden Arbeit wurde erfolgreich eine neue Gasphasen-Apparatur für
Photoelektronen-Imaging-Experimente simuliert, aufgebaut und in Verbindung mit einem ps-Lasersystem in Betrieb genommen.
Neben dem Aufbau der Apparatur stand die Aufklärung der Dynamik angeregter Zustände von aromatischen Heterocyclen und Pyrenen im Fokus dieser Arbeit. Die untersuchten Moleküle wurden durch Resonanzverstärkte Mehrphotonenionisation in einem Molekularstrahlexperiment sowohl zeit-, als auch frequenzaufgelöst untersucht. / In the presented work a new gas phase apparatus for photoelectron imaging experiments was succesfully simulated, constructed and together with a ps laser system
put into operation.
Besides the building of the new apparatus, the focus of this work was set to elucidate the excited state dynamics of selected aromatic heterocycles and pyrenes. The
examined molecules were investigated by frequency- and time-resolved resonance enhanced multi photon ionisation spectroscopy using a molecular beam experiment.
|
6 |
Excited-State Dynamics of Organic IntermediatesNoller, Bastian M. January 2009 (has links)
Würzburg, Univ., Diss., 2009. - Univ. Paris-Sud 11 & Laboratoire Francis Perrin Cea Saclay. / Zsfassung in dt. Sprache.
|
7 |
Laser magnetic resonance applied to excited states of iodine and to the fine structure transition in the electronic groundstate of iodine monoxideBreitbach, Thomas H. Unknown Date (has links) (PDF)
University, Diss., 2002--Bonn.
|
8 |
Theoretical investigation of excited states of C3 and pathways for the reaction C3+C3 C6Terentyev, Alexander V. Unknown Date (has links) (PDF)
Techn. University, Diss., 2005--Chemnitz.
|
9 |
Dynamik der angeregten Zustände Bor-haltiger pi-Systeme und Donor-substituierter Truxenone / Excited states dynamics of boron containing pi-systems and donor substituted truxenonesKöhler, Juliane January 2011 (has links) (PDF)
Im ersten Teil wurde die Dynamik des ersten angeregten Zustandes von drei Truxenonen untersucht. Nach Anregung im sichtbaren Bereich findet ein Elektrontransfer zwischen den Triarylamin-Donor und dem Truxenon-Akzeptor statt. Um die Abhängigkeit der Rate für den Rücktransfer von der elektronischen Kopplung zu untersuchen, wurde diese zum einen über den Abstand zwischen Donor und Akzeptor und zum anderen über die Position der Verknüpfung eingestellt. In einer ersten Studie wurde Truxenon 1, bei dem der direkt über das Stickstoff-Atom an den Akzeptor gekuppelt ist, mit dem System 2 verglichen, bei den die Einheiten über einen Phenyl-Spacer verbunden sind. Der Rücktransfer sollte dabei für das System 1 schneller sein, da ein kurzer Abstand mit einer starken elektronischen Kopplung einhergeht und damit auch mit einem schnellen Elektronentransfer. Allerdings wird die große Rate für das System mit dem größeren Abstand beobachtet (2). Dieses Ergebnis kann mit der Geometrie der Moleküle und der größeren sterischen Hinderung in 1 erklärt werden, aus der eine geringere elektronische Kopplung resultiert. In einem weiteren Experiment wurde die Stärke der elektronischen Kopplung in Abhängigkeit von der Position der Verknüpfung in Bezug auf den Phenyl-Spacer untersucht. Zu diesem Zweck wurden die Systeme 2 und 3 miteinander verglichen. Während in 2 die Einheiten in para-Position verknüpft sind, sind Donor und Akzeptor in 3 in meta-Position an den Phenyl-Spacer gekuppelt. Letzteres System zeichnet sich dabei durch eine geringere Resonanzstabilisierung aus. Dies hat eine geringere elektronische Kopplung zur Folge, was sich auch in den UV/Vis-Spektren zeigt. Die langwelligste Absorption ist hier bei höheren Energien zu beobachten. Zudem deuten die transienten Spektren an, dass in erster Linie nicht der ladungsgetrennte Zustand abgeregt wird sondern vielmehr die Truxenon-Einheit selbst. Im zweiten Teil wurden die Resonanz-Raman-Spektren vier verschiedener Borole aufgenommen. Dabei wurden zwei signifikanten Moden beobachtet, die beim pi –pi∗ -Übergang in ihrer Intensität verstärkt werden. Eine Bande bei 1598 cm-1 wird der symmetrischen Ringatmung zugeordnet, die aus einer Expansion des Borol-Rings resultiert. Eine zweite Schwingung bei 1298 cm-1 resultiert aus einer B-R Streckschwingung. Für System 5 wird diese Schwingung mit einer hohen Intensität beobachtet, während die Bande bei den Systemen 6-8, die mit einem Aryl-Rest substituiert sind, mit sehr geringer Intensität auftritt und deshalb lediglich mit einem hochauflösendem Setup detektiert werden kann. Aufgrund der schwachen Resonanzverstärkung kann von einer schwachen Wechselwirkung zwischen dem Bor und dem Aryl-Rest ausgegangen werden. In Borol 5, in dem eine Ferrocen-Einheit an das Bor gebunden ist, ist die Situation eine andere: nach Anregung des pi-pi*-Übergangs wird die Population im BC_4-Ring verschoben. Dadurch kann vom Eisen keine Elektronendichte mehr in das p_z-Orbital des Bors verschoben werden, die Fe-B-Wechselwirkung wird geschwächt und der Fe-B-Abstand wird vergrößert. Zusammenfassend konnte gezeigt werden, dass die Eigenschaften des Substituenten großen Einfluss auf die elektronische Struktur eines dreifach-substituierten Bor-Atoms hat, das in einer p_z-pi-Konjugation beteiligt ist. / In the first part the dynamics of the first excited states of the three truxenone systems were investigated. After excitation in the visible regime an electron is transferred from the triarylamine donor to the truxenone acceptor. To elucidate the dependence of the rate for the back electron transfer on the electronic coupling, the latter was adjusted via the distance between the donor and the acceptor and the position of substitution. In a first study the truxenone 1, where the donor is directly coupled to the acceptor via the nitrogen atom, was compared to 2, where the two units are connected via a phenylene spacer. The back electron transfer was expected to be faster for the smaller system 1, since a short distance is correlated with a strong coupling and therefore a fast electron transfer. However, the fast electron transfer is observed for the system with the larger distance, 2. This result is explained with the geometry of the molecules and therefore more steric hinderance for 1 which reduces the electronic coupling. Another experiment was focussed on the strength of the electronic coupling when the two units are connected in different positions regarding the phenylene spacer. Therefore the systems 2 and 3 are compared. In 2 the units are connected in para-position to the spacer whereas in 3 the connection is realized in meta-position. The latter is less stabilized due to its resonance structures. This destabilization results in a weak coupling which is also displayed in the steady state spectrum of compound 3. Here, the lowest wavelength absorption is shifted to higher energies. Furthermore, the transient spectra indicate that the charge separated state is not excited but the truxenone unit itself. This assumption was confirmed by TD-DFT calculations. In the second part the resonance Raman spectra of four boroles were recorded. Here, two significant modes that emerge with enhanced intensity upon pi –pi∗ excitation were observed in the RR spectra of the boroles. A band at 1598 cm−1 is assigned to a symmetrical ring-breathing mode, which is caused by the expansion of the borole ring. Second, the vibration at 1298 cm−1 corresponds to a stretching of the B–R bond. For compound 5 it appears with high intensity, but for compounds 6–8, which yield an aryl substituent, this band appears with low intensity and can only be detected with a high-resolution setup. Because of this small resonant enhancement, only a weak interaction between the boron and the aryl substituent is expected. In borole 5, where a ferrocene unit is connected to the boron, the situation is different: exciting the pi –pi∗ transition causes a change of the population in the BC_4 ring. This prevents the iron from donating electron density to the p_z orbital of the boron. Therefore the Fe–B interaction becomes weak and the Fe–B distance increases. In conclusion, it was shown that the nature of the substituent affects the electronic structure of a tri-substituted boron participating in a p_z-pi conjugation.
|
10 |
The mechanism of an unusual benzo/benzo photocycloaddition reaction photophysical and photochemical investigation of [3.3] orthocyclophanes with two face-to-face preoriented benzenoid chromophores /Tonne, Jörn. January 2001 (has links)
Freiburg, Univ., Diss., 2001.
|
Page generated in 0.402 seconds