• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 23
  • 22
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 96
  • 30
  • 26
  • 23
  • 22
  • 18
  • 16
  • 15
  • 15
  • 15
  • 13
  • 12
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparison of angiogenic substances applied to the chick chorioallantoic membrane : their mechanisms of action

Brown, F. I. January 1986 (has links)
Computer linked morphometric methods and the measurements of DNA synthesis were used to quantitate angiogenesis on the chorioallantoic membrane (CAM) of chick embryos. The former measured changes in vascular parameters such as the length and number of arterial branches whereas the latter measured the degree of DNA synthesis associated with angiogenic stimulation of the CAM. Time-course graphs prepared using the DNA synthesis assay showed that fibrin degradation products (FDPs), histamine and heparin took 18, 36 and 12h respectively, to stimulate maximal DNA synthesis. Therefore it was suggested that these substances employ different modes of action to stimulate angiogenesis on the CAM. It appears that histamine is an indirect stimulator of angiogenesis but the heparin results are from preliminary experiments and further work will be needed to verify them. Tumour angiogenic factor produced a 200% increase in DNA synthesis, 18h after its application so it appears to act like FDPs. Fibronectin degradation products were found to be involved in the FDP response and since fibrinogen, its degradation products, bovine serum albumin and fetal calf serum were not active it appears that the angiogenesis induced by the FDPs was specific to a product of cross-linked fibrin.
2

The role of tumour associated macrophages in breast cancer angiogenesis

Leek, Russell D. January 1999 (has links)
No description available.
3

Expression humaner Angiogenesefaktoren in der Plazenta präeklamptischer Patientinnen / Expression of human angiogenesis factors in the placenta of preeclamptic patients

Nowak, Bettina Antonia 29 April 2020 (has links)
No description available.
4

Angiogenesis in endometriosis : the role of circulating angiogenic cells and the endometrium

Webster, Katie Elizabeth January 2012 (has links)
Endometriosis is a common cause of subfertility and pelvic pain, affecting up to 10% of women of reproductive age. It is characterised by the presence of endometrial-like tissue outside the uterus. The development of the disease is still poorly understood and, currently, the diagnosis relies on visualisation of typical lesions during surgery. There is great interest in identifying biomarkers to assist in diagnosis and disease management. Blood vessel development is known to be a crucial feature of endometriosis, but the mechanisms involved in angiogenesis are not well described for this disease. Most vessel development relies on the proliferation and migration of pre-existing endothelial cells. However, there may also be roles for cells derived from peripheral blood (circulating angiogenic cells) and surrounding stromal cells. In this thesis, the contribution of these different cell types to vessel development in endometriosis is assessed. In chapter 2, a robust protocol was optimised to identify circulating angiogenic cells (CACs) with flow cytometry. The reliability of the protocol was verified, and the level of these cells was found not to fluctuate with the menstrual cycle in healthy women (P=0.279, F=1.359, 3 d.f.). In chapter 3, levels of CACs in women with and without endometriosis were found to be equivalent (0.0835% ± 0.0422 compared to 0.0724% ± 0.0414), demonstrating that they have no use as a disease biomarker. In chapter 4, isolation and culture of endothelial cells from the endometrium was attempted. However, a pure culture of endometrial endothelial cells could not be obtained, which may be due to contamination by other cell types or cellular transdifferentiation. Finally, in chapter 5, the contribution of endometrial stromal cells to vessel development was considered. Stromal cells were found not to differentiate towards an endothelial cell phenotype, but were able to participate in tube formation assays. However, the presence of endometriosis did not influence this behaviour.
5

Novel Modalities for Preeclampsia Prevention: A Role for Exercise Training and 5–Aminoimidazole–4–Carboxamide–1–β–D–Ribofuranoside (AICAR) Administration

Banek, Christopher 17 October 2014 (has links)
Preeclampsia (PE) remains one of the most enigmatic and pervasive conditions developed during pregnancy and is a leading cause of maternal and fetal morbidity and mortality throughout the world. Afflicting nearly 5-8% of pregnancies in the Unites States, PE is most commonly characterized by an increase in blood pressure and high protein excretion near or after the 20th week of gestation. Unfortunately, few effective treatments are available, and the only "cure" is delivery. While the molecular pathogenesis of PE remains undefined, an interruption in placental blood flow, or placental ischemia, is widely observed as a primary contributor to the syndrome progression. Furthermore, to investigate the role of both pharmacological and non-pharmacological modalities to prevent placental ischemia induced hypertension, we employed a robust model of reduced utero-placental perfusion pressure (RUPP) in the pregnant rat. First, in Chapter IV, exercise initiated during gestation was not effective in the prevention of RUPP-induced hypertension, whereas exercise training prior to and continued through gestation prevented the increase in blood pressure. Though the molecular contributions to this effect are undefined, the effects appear to be independent of angiogenic balance restoration. Finally, in Chapter V, administration of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) was explored as a novel pharmacological modality to prevent the onset of hypertension and endothelial dysfunction in the RUPP model. As hypothesized, AICAR ameliorated the RUPP-induced hypertension, and the anti-hypertensive effect in the RUPP appears to be dependent on the restoration of angiogenic balance in the maternal plasma. This dissertation includes previously published and unpublished co-authored material.
6

Pre-Clinical Evaluation of Biopolymer Delivered Circulating Angiogenic Cells in Hibernating Myocardium

Giordano, Céline 20 January 2012 (has links)
Vasculogenic cell-based therapy combined with tissue engineering is a promising revascularization strategy for patients with hibernating myocardium, a common clinical condition. We used a clinically relevant swine model of hibernating myocardium to examine the benefits of biopolymer-supported delivery of circulating angiogenic cells (CACs) in this context. Twenty-five swine underwent placement of an ameroid constrictor on the left circumflex artery (LCx). After 2 weeks, positron emission tomography measures of myocardial blood flow (MBF) and myocardial flow reserve (MFR) were reduced in the affected region (both p<0.001). Hibernation (mismatch) was specific to the LCx territory. Swine were randomized to receive intramyocardial injections of PBS control (n=10), CACs (n=8), or CACs + a collagen-based matrix (n=7). At follow-up, stress MBF and MFR were increased only in the cells+matrix group (p<0.01), and mismatch was lower in the cells+matrix treated animals (p=0.02) compared to controls. Similar results were found using microsphere-measured MBF. Wall motion abnormalities and ejection fraction improved only in the cells+matrix group. This preclinical swine model demonstrated ischemia and hibernation, which was improved by the combined delivery of CACs and a collagen-based matrix. To our knowledge, this is the first demonstration of the mechanisms and effects of combining progenitor cells and biopolymers in the setting of myocardial hibernation, a common clinical condition in patients with advanced coronary artery disease.
7

Pre-Clinical Evaluation of Biopolymer Delivered Circulating Angiogenic Cells in Hibernating Myocardium

Giordano, Céline 20 January 2012 (has links)
Vasculogenic cell-based therapy combined with tissue engineering is a promising revascularization strategy for patients with hibernating myocardium, a common clinical condition. We used a clinically relevant swine model of hibernating myocardium to examine the benefits of biopolymer-supported delivery of circulating angiogenic cells (CACs) in this context. Twenty-five swine underwent placement of an ameroid constrictor on the left circumflex artery (LCx). After 2 weeks, positron emission tomography measures of myocardial blood flow (MBF) and myocardial flow reserve (MFR) were reduced in the affected region (both p<0.001). Hibernation (mismatch) was specific to the LCx territory. Swine were randomized to receive intramyocardial injections of PBS control (n=10), CACs (n=8), or CACs + a collagen-based matrix (n=7). At follow-up, stress MBF and MFR were increased only in the cells+matrix group (p<0.01), and mismatch was lower in the cells+matrix treated animals (p=0.02) compared to controls. Similar results were found using microsphere-measured MBF. Wall motion abnormalities and ejection fraction improved only in the cells+matrix group. This preclinical swine model demonstrated ischemia and hibernation, which was improved by the combined delivery of CACs and a collagen-based matrix. To our knowledge, this is the first demonstration of the mechanisms and effects of combining progenitor cells and biopolymers in the setting of myocardial hibernation, a common clinical condition in patients with advanced coronary artery disease.
8

Pre-Clinical Evaluation of Biopolymer Delivered Circulating Angiogenic Cells in Hibernating Myocardium

Giordano, Céline 20 January 2012 (has links)
Vasculogenic cell-based therapy combined with tissue engineering is a promising revascularization strategy for patients with hibernating myocardium, a common clinical condition. We used a clinically relevant swine model of hibernating myocardium to examine the benefits of biopolymer-supported delivery of circulating angiogenic cells (CACs) in this context. Twenty-five swine underwent placement of an ameroid constrictor on the left circumflex artery (LCx). After 2 weeks, positron emission tomography measures of myocardial blood flow (MBF) and myocardial flow reserve (MFR) were reduced in the affected region (both p<0.001). Hibernation (mismatch) was specific to the LCx territory. Swine were randomized to receive intramyocardial injections of PBS control (n=10), CACs (n=8), or CACs + a collagen-based matrix (n=7). At follow-up, stress MBF and MFR were increased only in the cells+matrix group (p<0.01), and mismatch was lower in the cells+matrix treated animals (p=0.02) compared to controls. Similar results were found using microsphere-measured MBF. Wall motion abnormalities and ejection fraction improved only in the cells+matrix group. This preclinical swine model demonstrated ischemia and hibernation, which was improved by the combined delivery of CACs and a collagen-based matrix. To our knowledge, this is the first demonstration of the mechanisms and effects of combining progenitor cells and biopolymers in the setting of myocardial hibernation, a common clinical condition in patients with advanced coronary artery disease.
9

Pre-Clinical Evaluation of Biopolymer Delivered Circulating Angiogenic Cells in Hibernating Myocardium

Giordano, Céline January 2011 (has links)
Vasculogenic cell-based therapy combined with tissue engineering is a promising revascularization strategy for patients with hibernating myocardium, a common clinical condition. We used a clinically relevant swine model of hibernating myocardium to examine the benefits of biopolymer-supported delivery of circulating angiogenic cells (CACs) in this context. Twenty-five swine underwent placement of an ameroid constrictor on the left circumflex artery (LCx). After 2 weeks, positron emission tomography measures of myocardial blood flow (MBF) and myocardial flow reserve (MFR) were reduced in the affected region (both p<0.001). Hibernation (mismatch) was specific to the LCx territory. Swine were randomized to receive intramyocardial injections of PBS control (n=10), CACs (n=8), or CACs + a collagen-based matrix (n=7). At follow-up, stress MBF and MFR were increased only in the cells+matrix group (p<0.01), and mismatch was lower in the cells+matrix treated animals (p=0.02) compared to controls. Similar results were found using microsphere-measured MBF. Wall motion abnormalities and ejection fraction improved only in the cells+matrix group. This preclinical swine model demonstrated ischemia and hibernation, which was improved by the combined delivery of CACs and a collagen-based matrix. To our knowledge, this is the first demonstration of the mechanisms and effects of combining progenitor cells and biopolymers in the setting of myocardial hibernation, a common clinical condition in patients with advanced coronary artery disease.
10

Improved Survival of Ischemic Random Skin Flaps Through the Use of Bone Marrow Nonhematopoietic Stem Cells and Angiogenic Growth Factors

Simman, Richard, Craft, Chris, McKinney, Bart 01 May 2005 (has links)
Surgical skin flaps are frequently used in plastic and reconstructive surgery to repair acquired or congenital defects. Necrosis is a common complication associated with these flaps postoperatively as a result of inadequate blood supply. Stem cells are precursor cells with the potential to differentiate into more specialized cells. Angiogenic factors act to direct cellular differentiation and organization to form new vascular elements. Our theory was that the combination of angiogenic growth factors with stem cells derived from the subject preoperatively would augment neovascularization, thereby increasing blood supply to the flap, which may ultimately improve flap survival. In phase I, 40 Lewis rats were randomized into 4 groups of 10. Random dorsal skin flaps were elevated and treated at the same time. The first group was injected with only medium, the second with stem cells, the third with stem cells and angiogenic factors, and the fourth with angiogenic growth factors. Millimetric measurements of flap viability at 7 and 14 days did not show any statistically significant differences between the studied groups. In phase II, 24 rats were also randomized into 4 groups of 6, but this time were treated 1 week before flap elevation. The viability measurements showed an increased rate of viability in the group in which stem cells and the angiogenic factors were administered simultaneously (84.5% ± 3.2%) as compared with the unmodified control group (62.6% ± 7.3%) or to the groups in which only precursor cells (60.4% ± 7.9%) or angiogenic factors (62.3% ± 10.1%). Increased blood supply brought by these manipulations is believed translated to increased tissue flap survival. Punch biopsies showed that "green fluorescent protein"-labeled precursor cells was noted to form luminal structures in the treated flaps. The vascular cast of all flaps was filled with Mercox plastic resin. After euthanasia, the soft tissues of the harvested flaps were dissolved and the remaining vascular cast was weighted. The weight-based ratio of the vascular composition was determined. The flaps injected with both stem cells and angiogenic factors showed higher values. We conclude that the administration of bone marrow stem cells with angiogenic factors 1 week before flap creation improves the survival of ischemic random skin flaps.

Page generated in 0.0584 seconds