• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 164
  • 164
  • 164
  • 107
  • 103
  • 102
  • 102
  • 69
  • 58
  • 54
  • 53
  • 44
  • 38
  • 36
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Chromatin Structure of the Rat Osteocalcin Gene Promoter in Bone-Derived Cells

Montecino, Martin A. 15 November 1995 (has links)
Transcription of the osteocalcin gene, which encodes a bone-specific 10 kDa protein, is controlled by the coordinated utilization of modularly organized basal and hormone-responsive enhancer elements. Activation of these sequences involves the interaction of specific transcription factors to these promoter elements. It is becoming increasingly accepted that nuclear architecture provides a basis for support of tightly regulated modulation of cell growth and tissue-specific transcription which is required for the onset and progression of differentiation. Thus packaging of DNA as chromatin can facilitate the cooperative interaction between activities of independent regulatory elements that contribute to the level of transcription. Here, we show that a specific nucleosomal organization supports the constitutive expression of the osteocalcin gene in ROS 17/2.8 rat osteosarcoma cells and that chromatin remodeling directly correlates with the developmentally regulated transcriptional activation of this gene in normal diploid osteoblasts. By combining DNase I, micrococcal nuclease, and specific restriction endonuclease digestion analysis, we observed that the presence of DNase I hypersensitive sites (proximal: -170 to -70, and distal: -600 to -400) and a selective nucleosome positioning over the osteocalcin gene promoter are directly associated with developmentally stage-specific transcriptional activation in bone-derived cells. In addition, we found that chromatin hyperacetylation prevents a key transition in the chromatin structure which is required for the formation of the distal DNase I hypersensitive site. This transition involves the interaction of specific nuclear factors and is necessary for the subsequent ligand-dependent binding of the vitamin D receptor complex. Finally, we have established a requirement for sequences residing in the proximal region of the osteocalcin gene promoter for both formation of the proximal hypersensitive site and basal transcriptional activity. Our approach was to assay nuclease accessibility in ROS 17/2.8 cell lines stably transfected with promoter deletion constructs driving expression of a CAT reporter gene.
32

Cloning, Expression and Regulation of CYP3A10, a Hamster Liver Cytochrome P450 Involved in Lithocholic Acid and Steroid 6β-Hydroxylation: a Dissertation

Teixeira, Jose Manuel 01 January 1994 (has links)
Bile acid metabolism is integrally involved in cholesterol homeostasis in mammals because it is the major means by which cholesterol is eliminated from the body. We have undertaken an effort to study the molecular mechanisms underlying the regulation of bile acid metabolism by isolating and characterizing the cDNA and gene for an enzyme that hydroxylates lithocholic acid (LCA) at position 6β, lithocholic acid 6β-hydroxylase; the first bile acid-induced gene reported. LCA is a very hydrophobic, toxic bile acid formed from chenodeoxycholic acid in the gut lumen upon reduction of the 7α-hydroxy group by microbial enzymes. The proper elimination of LCA is essential for maintenance of the bile acid pool and for prevention of cholestasis which results from LCA precipitating in the cannaculi of the liver when its concentration is high. The LCA 6β-hydroxylase cDNA was isolated by differential hybridization of hamster liver libraries prepared from animals fed either a cholic acid enriched diet or a cholestipol-rich chow and was named CYP3A10 based on its homology with other cytochrome P450s (P450) in family 3A. We found that CYP3A10 was essentially expressed only in males. A statistical analysis of RNA from young males fed with cholic acid and normal chow showed that the cholic acid induction was about 50% at the RNA level. We determined the biological nature of the protein encoded by CYP3A10 by expression of the cDNA in COS cells. Microsomes prepared from transfected cells were assayed with LCA as a substrate and found to hydroxylate LCA predominantly at position 6β. We examined whether CYP3A10 could hydroxylate other steroid compounds by assays with testosterone, progesterone and androstenedione and found that, although 6β-hydroxylase (as well as others) activity was observed with all three, LCA was the preferred substrate based on kinetic analysis. A developmental time course of CYP3A10 expression in males showed little expression before puberty, a striking induction of expression at puberty and a fourfold induction thereafter through adulthood. We then examined the male-specific expression of CYP3A10 in hamster liver. We disrupted the pattern of GH secretion in male hamsters by hypophysectomy, neonatal glutamate treatment and by continuous infusion of GH via osmotic minipumps (to mimic the female pattern of GH secretion) and found no significant effect on CYP3A10 expression. Conversely, in females, hypophysectomy and neonatal glutamate treatment significantly induced CYP3A10 expression 5- to 10-fold. Additionally, when females treated neonatally with glutamate were injected twice daily with GH as adults (to mimic the male pattern of GH secretion), the levels of CYP3A10 expression were not significantly different from those of normal males. These results led us to conclude that the pattern of GH secretion in males does not control the male-specific expression of CYP3A10 but that in females expression can be induced by altering the tonic secretion of GH. No significant effect on CYP3A10 expression was observed by castration of adult males, indicating that circulating androgens were not required for expression. We found that gonadal hormones (e.g. estrogen and progesterone) do not have a suppressive effect on CYP3A10 expression in females since ovariectomy did not induce expression. Many genes are "imprinted" neonatally by exposure to a given effector for developmental-, tissue- or sexually regulated expression. We investigated whether neonatal androgen exposure was required for male-specific expression of CYP3A10 by castrating hamsters neonatally and determining the level of CYP3A10 expression in adulthood. Our results indicate that androgens are required neonatally for CYP3A10 expression since no expression was observed in neonatally castrated hamsters. We were unable to induce expression in neonatally castrated hamsters by either GH or testosterone injections. These results suggest several notable points 1) that CYP3A10 expression is programmed neonatally by androgen exposure; 2) that androgens exert their effect directly on the liver and not via the hypothalamus; 3) that neither testosterone nor GH can restore CYP3A10 expression when males have not been exposed to androgens neonatally; and 4) that in experimental conditions, females can be induced to express CYP3A10, which indicates that there are two modes for regulating expression: by "imprinting" in males and by GH and testosterone in females. We are now studying the molecular mechanisms involved in the bile acid-mediated induction and the male-specific expression of CYP3A10. We have cloned approximately 8 kb of 5' flanking DNA from a hamster genomic library and sequenced about 1 kb of proximal DNA. Primer extension and S1 digestion analyses indicate that the mRNA for CYP3A10 has multiple transcription initiation sites clustered about 90 bp from the initiator methionine codon. We have also prepared CYP3A10 promoter/lacZ chimeric constructs to begin delineating the cis-acting elements controlling CYP3A10 expression and regulation. We used H2.35 cells as recipients because they are a mouse hepatocyte cell line that has been transformed with a temperature sensitive SV40. These cells can be grown at the permissive temperature and can be induced to behave like liver cells, the differentiated condition, by switching to a nonpermissive temperature. We have found that the construct with 1 kb of proximal CYP3A10 5' flanking DNA was able to express the reporter gene at higher levels under differentiated conditions, which were consistent with higher expression of an albumin promoter/lacZconstruct, upon switching the cells to the more liver phenotype. The system characterized and described here is ideally suited for dissecting the molecular details governing bile acid-mediated regulation and sexually dimorphic expression of liver genes. Very little is known about both these very important biological phenomena. Much could be learned about transcriptional regulation of liver genes by investigating the cis-elements and trans-acting factors mediating regulation of CYP3A10 expression.
33

Analysis of Cell Polarity Signaling in <em>C. elegans</em>: A Dissertation

Rocheleau, Christian Ernest 03 December 1999 (has links)
During embryonic development of the nematode Caenorhabditis elegans, cell fates are specified by asymmetric segregation of cell fate determinants and via cell-cell signaling events. Specification of the eight-cell stage blastomere E, the endoderm progenitor cell, requires both cell signaling and asymmetric cell division. At the four-cell stage, a polarity-inducing signal from the P2 cell is required for the EMS cell to divide asymmetrically to produce an anterior daughter MS, and posterior daughter E. In the absence of signal, the EMS cell divides symmetrically to produce two daughters that adopt the MS fate. This thesis describes the identification and analyses of seven genes required to tranduce this polarity-inducing signal and specify endoderm formation. The mom-1, mom-2, mom-5, apr-1, and wrm-1 genes are homologous to components of the Wnt/Wingless signal transduction pathway, and the mom-4, and lit-1 genes are related to components of the mitogen-activated protein kinase pathway. Biochemical analysis of these signaling molecules reveal a novel convergence of these pathways at the level of the LIT-1 and WRM-1 proteins, which appear to function as a kinase complex and are required for the downregulation of POP-1. Together these genes constitute components of a complex genetic pathway required for specification of the E cell fate.
34

Cytotoxic Lymphocytes in Viral Hepatitis: a Thesis

McIntyre, Kim W. 01 April 1987 (has links)
The immunological mechanisms involved in virus-induced hepatitis were examined by measuring the cytotoxic capabilities and the morphological and antigenic phenotypes of leukocytes isolated from the livers of virus-infected mice. Large granular lymphocytes (LGL) of both natural killer (NK) cell and cytotoxic T lymphocyte (CTL) phenoytpes [phenotypes] accumulated in livers of mice infected with lymphocytic choriomeningitis virus (LCMV) of either the nonhepatotropic Armstrong strain (LCMV-ARM) or the hepatotropic WE strain (LCMV-WE). NK cell activity and LGL number increased 3- to 4-fold between days 1 and 5 postinfection (p.i.). These LGL were characterized as NK cells on the basis of cell surface antigens, kinetics of appearance, target cell range, and morphology. By day 7 p.i., virus-specific, H-2-restricted, Thy-1+, Lyt-2+CTL activity was present in the liver, and its appearance correlated with a second wave of LGL accumulation. Total CTL activity, leukocyte numbers, and CTL/LGL numbers were at least 5-fold higher in the livers of LCMV-WE-infected mice than in the livers of LCMV-ARM-infected mice. Mice infected with the cytopathic viruses, mouse hepatitis virus and murine cytomegalovirus, experienced greater increases in NK/LGL by day 3 p.i. than did mice either infected with LCMV or injected with poly I:C. The early and late accumulations of LGL in the virus-infected liver were associated with the appearance of two waves of LGL with blast cell morphology expressing the phenotypes of NK cells and CTL, respectively. Thus, the organ-associated accumulation, blastogenesis, and in situ proliferation of cytotoxic LGL provide a means for the localization and site-specific augmentation of a host's cell-mediated antiviral defenses. The mechanism of inhibition of virus synthesis in vivo by immune splenocytes containing virus-specific CTL was examined in mice dually infected with two different viruses and then adoptively immunized with spleen cells immune to one of the two viruses. Only the titer of the virus to which the splenocytes were immune was reduced in titer, and no nonspecific antiviral effect was seen on the titer of the 'bystander' heterologous virus. These data are consistent with an in vivo mechanism of CTL-mediated antiviral resistance involving direct cytotoxicity rather than release and dissemination of antigen-nonspecific antiviral factors, such as interferon, following recognition of appropriate viral antigen.
35

Ethanol Tolerance in the Rat Neurohypophysis: a Dissertation

Knott, Thomas K. 01 January 2001 (has links)
One of the main components underlying drug addiction is the emergence of tolerance. Although its development is a complex issue, and is believed to have both psychological and physiological connotations, it is clear that some physiological change must occur that would enable an organism to withstand drug concentrations lethal to a naïve system. The purpose of this thesis was to identify and study a physiological mechanism, whose characteristics were altered due to chronic exposure to ethanol. Vasopressin (AVP), whose primary function is to control water balance, release from the neurohypophysis is suppressed by an acute ethanol challenge. Therefore, I hypothesized; 1) that chronic ethanol exposure would reduce the normal suppression of AVP release during an acute ethanol challenge and 2) that the ion channels that are acutely sensitive to ethanol, involved in the control of AVP release, would exhibit a change in their ethanol sensitivity and characteristics. To study the hypothesis, I utilized the neurohypophysis from rats chronically exposed to ethanol and yoked controls to determine whether chronic exposure would modify the acute ethanol sensitivity of the neurohypophysial vasopressin release mechanism. I examined whether the long-term ethanol exposure affected the suppression of vasopressin release from either or both the intact neurohypophysis and the isolated neurohypophysial terminals. In addition, I investigated how chronic exposure affected two types of potassium channels, the ethanol sensitive large conductance Ca+2-activated (BK) channel and the fast inactivating (IA) channel known to be insensitive to physiologically relevant concentrations of ethanol. I was able to establish that chronic ethanol exposure reduced the suppression of vasopressin release by an acute ethanol challenge from both the intact neurohypophysis and the isolated neurohypophysial terminals. In addition, I discovered that oxytocin release was affected similarly. I concluded from this data that chronic exposure to ethanol affected a general mechanism, which controlled hormone release from the neurohypophysis, and that this mechanism could be isolated to the neurohypophysial terminals. I also used electrophysiological techniques to study ion channel characteristics of both the BK and IA potassium channels. I found that in naïve rats, BK channels were potentiated and IA channels insensitive to physiological relevant concentrations of ethanol. But in chronic ethanol-exposed rats the BK channels exhibited a reduced sensitivity to ethanol while IA channels were inhibited. In addition, the current density of the BK channel was significantly reduced. These results show that at least one characteristic of each potassium channel has been modified. This suggests that chronic exposure can not only modify the ethanol sensitivity of ion channels known to be ethanol-sensitive, but also those believed to be relatively insensitive. Therefore, since modifications in these channels have previously been shown to alter the duration and frequency of action potentials, I conclude that these ethanol-induced modifications play a role in the modified hormone release patterns observed in the chronically exposed rats.
36

Osteoclast Ontogeny-Experimental Studies in Two Osteopetrotic Mutations in the Rat: A Dissertation

Cielinski, Matthew Joseph 01 April 1994 (has links)
Osteopetrosis is a metabolic bone disease in mammals characterized by a generalized skeletal sclerosis caused by reduced bone resorption. This reduced bone resorption is manifested in afflicted animals by abnormal bone shape, reduced or absent marrow cavities, extramedullary hemopoiesis, abnormal mineral homeostasis and absent or delayed tooth eruption. The available osteopetrotic animal mutations have been a constant source of fruitful investigations concerning the systemic regulation of osteoclastogenesis and bone metabolism. Tooth eruption, on the other hand, is a localized manifestation of the timely activation of bone resorption and bone formation on opposite sides of an erupting tooth. Its rate-limiting step is the speed of bone resorption to form the eruption pathway. In this dissertation, we used two osteopetrotic rat mutations, toothless (tl) and microphthalmia blanc (mib), to investigate the abnormal development of osteoclasts and tooth eruption in mutant rats with an emphasis on the role of systemic and local factors. The significant contributions to this work are listed below. 1. In the toothless rat, a mutation lacking erupted dentition due to severely reduced bone resorption, colony-stimulating factor-1 (CSF-1) promoted tooth eruption but this was delayed compared to normal rats. Eruption was accompanied by changes in the populations of tartrate-resistant acid phosphatase-positive (TRAP+) mononuclear cells in the dental follicle and TRAP+ osteoclasts on adjacent alveolar bone surfaces. These cell populations were dramatically increased in treated mutants compared to untreated tl rats, but the timing of their appearance was delayed compared to normal littermates. This lag in the appearance of osteoclasts and their precursors corresponded to the delay in eruption of first molars in treated tl rats. 2. CSF-1 also accelerated the eruption of molars in normal rats. CSF-1 increased the number of TRAP+ mononuclear cells in the dental follicle and TRAP+ osteoclasts on adjacent alveolar bone surfaces, but had no effect on the timing of their appearance in normal rats. 3. Our data revealed a differential effect on tooth eruption of the growth factors CSF-1 and epidermal growth factor (EGF). CSF-1 accelerated eruption of molars in normal rats, but had no effect on incisor eruption. On the other hand, EGF accelerated incisor eruption; but did not affect molar eruption in normal rats. 4. We have described the mechanism for the transient, mild form of osteopetrosis inherited by mib rats. Mutant animals possess a typical sclerosis at birth, which diminished--but was not resolved--during the first postnatal month. These characteristics are caused by early reductions in osteoclast number and function which improve to normal levels by 4 weeks. Osteoclast numbers were severely reduced in mib rats between birth and 2 weeks, but improved to near normal levels by 4 weeks. Neonatal abnormalities in osteoclast function included reduced staining for the functional enzymes TRAP and TrATPase, decreased levels of mRNA for both TrATPase and CAll, and inability to form a well-developed ruffled border. None of these defects were apparent after the first postnatal month. 5. Finally, we have shown that the dental abnormalities caused by the mild, transient form of osteopetrosis in mib rats are limited to incisor defects and delayed eruption of all teeth. Histologic and radiographic examination of mutant incisors revealed that, contrary to the situation in normal rats, the apex of the incisors of mib rats failed to extend past the first molar region to the third molar. The incisor apex of newborn mib rats was misshaped due to ankylosis of incisor matrices with alveolar bone. This ankylosis was temporary, being resolved by the third postnatal day. The delayed eruption of incisors in mib rats and abnormal shape and occlusion of these teeth in older animals is a consequence of the temporary ankylosis in newborn rats.
37

Virus-Host Interactions in the Development of Avian Leukosis Virus-Induced Osteopetrosis: a Dissertation

Foster, Rosalinda Gram 01 May 1993 (has links)
Avian leukosis virus (ALV)-induced osteopetrosis is a proliferative disorder of the bone affecting the growth and differentiation of osteoblasts. Osteopetrosis is a polyclonal disease in which cells of the bone contain, on average, multiple viral DNA copies. Osteopetrotic bone is also characterized by the accumulation of unintegrated viral DNA, suggesting an atypical life cycle of the virus in the infected osteoblasts. To better understand virus-host interactions in the induction of osteopetrosis by ALVs, infected chick osteoblast cultures and osteopetrotic bone were examined for aspects of the virus life cycle and effects of infection on osteoblast function. Levels of infection and virus expression were compared in cultured osteoblasts and osteopetrotic bone. Osteopetrotic bone contained higher levels of viral DNA and correspondingly higher levels of viral proteins than infected osteoblast cultures, suggesting a higher viral load in the diseased bone. A significant level of mature Gag protein was present in the bone, suggesting the accumulation of mature virus particles in the diseased bone. It is possible that the accumulation of virus could facilitate the high levels of infection observed in the diseased bone. The mechanism by which unintegrated viral DNA persisted in osteopetrotic bone was investigated by examining the susceptibility of infected osteoblasts to superinfection. The results indicated that, in culture, infected osteoblasts were able to establish interference to superinfection. This suggests that the persistence of unintegrated viral DNA in osteopetrotic bone may not result from the continuing infection of productively infected osteoblasts. The effect of virus infection on osteoblast function was examined in the diseased bone and in osteoblast cultures. In infected chickens, osteoblast activity, as evidenced by the expression of osteoblast phenotypic markers, was increased only in chickens developing severe osteopetrosis. In culture, virus infection had no apparent effect on either the proliferation or differentiation of osteoblasts. This indicates that infection was itself not sufficient to perturb osteoblast function. Furthermore, it suggested that additional components of the bone may be required for ALV infection to induce the abnormal activity of osteoblasts observed in osteopetrosis.
38

Dynamics of Neuron-Specific Gene Expression During Development and in Response to Selective Lesions of the Rat Central Nervous System: A Dissertation

Melloni, Richard H. 01 April 1993 (has links)
Synapse development and injury-induced reorganization in the nervous system have been extensively characterized morphologically, although, relatively little is known regarding the molecular and biochemical events that underlie these processes. In an attempt to better understand, at the molecular level, the role of the expression of synaptic proteins during synapse establishment and regeneration, this dissertation examines the dynamics of expression of the neuron-specific gene synapsin I during development and in response to selective lesions of the rat central nervous system. Synapsin I is the best characterized member of a family of nerve-terminal specific phosphoproteins implicated in the regulation of neurotransmitter release. During development, the expression of synapsin I correlates temporally and topographically with synapse formation, and recent physiological studies by Lu et al., (1992) have suggested that synapsin I may participate in the functional maturation of synapses. To better understand the temporal relationship between synapsin I gene expression and particular cellular events during development, we have used in situhybridization histochemistry to localize synapsin I mRNA in the rat central and peripheral nervous systems throughout embryonic and postnatal development, and into the adult period. During development, from the earliest embryonic time point examined (E12), the expression of the synapsin I gene was detectable in both the rat central and peripheral nervous systems. While, in general, levels of synapsin I mRNAs were high in utero, synapsin I cDNA probes revealed specific patterns of hybridization in different regions of the embryonic nervous system. To precisely determine the temporal onset of expression of the synapsin I gene during neuronal development, we examined in detail the appearance of synapsin I mRNA during the well characterized postnatal development of the cerebellum and hippocampus. In both regions, the onset of synapsin I gene expression correlated with the period of stem cell commitment to terminal differentiation. In a second phase, in accord with prior analyses, synapsin I gene expression increases to a maximum for a given neuronal population during synapse formation. In the adult rat brain, our data demonstrates a widespread yet regionally variable pattern of expression of synapsin I mRNA similar to that seen at earlier time points, with noteworthy exceptions. The greatest abundance of synapsin I mRNA was found in the pyramidal neurons of the CA3 and CA4 fields of the hippocampus, and in the mitral and internal granular cell layers of the olfactory bulb. Other areas abundant in synapsin I mRNA were the layer n neurons of the piriform and entorhinal cortices, the granule cell neurons of the dentate gyrus, the pyramidal neurons of hippocampal fields CA1 and CA2, and the cells of the parasubiculum. In general, the pattern of expression of synapsin I mRNA paralleled those encoding other synaptic terminal-specific proteins, such as synaptophysin, VAMP-2, and SNAP-25. Then, to determine specifically how synapsin I mRNA levels are related to levels of synapsin I protein in the adult rat brain, we employed in situhybridization histochemistry and immunohistochemistry to examine in detail the local distribution of both synapsin I mRNA and protein in the hippocampus. In short, these data revealed differential levels of expression of synapsin I mRNA and protein within defined synaptic circuits of the rat hippocampus. Based on these data we hypothesized that locally high levels of synapsin I mRNA in neuronal somata may reflect the ability of the nervous system to respond to select enviromental stimuli and/or injury by producing longterm changes in synaptic circuitry. To test this hypothesis and to better understand the regulation and putative role of synapsin I gene expression in the development of functional synapses in the central nervous system, we first examined the developmental pattern of expression of the synapsin I gene; in dentate granule neurons of the dentate gyrus and their accompaning mossy fibers during the main period of synaptogenic differentiation in the rat hippocampus. The results of these studies indicate a significant difference between the temporal expression of synapsin I mRNA in dentate granule cell somata and the appearence of protein in their mossy fiber terminals during the posmatal development of these neurons. Next, to investigate the regulation and putative role of synapsin I gene expression during the restoration of synaptic contacts in the central nervous system, we examined the expression of the synapsin I mRNA and protein following lesions of hippocampal circuitry. These studies show marked changes in the pattern and intensity of synapsin I immunoreactivity in the dendritic fields of dentate granule cell neurons following perforant pathway transection. In contrast, changes in synapsin I mRNA expression in target neurons, and in those neurons responsible for the reinnervation of this region of the hippocampus, were not found to accompany new synapse formation. On a molecular level, both developmental and lesion data suggest that the expression of the synapsin I gene is tightly regulated in the central nervous system, and that considerable changes in synapsin I protein may occur in neurons without concommitant changes in the levels of its mRNA. From a functional standpoint, our results suggest that the appearance of detectable levels of synapsin I protein in developing and sprouting synapses does not reflect simply synaptogenesis, but coincides with the acquisition of function by those central synapses.
39

Cytoskeletal Regulation and Morphogen Signaling During Synaptic Outgrowth at the <em>Drosophila</em> Larval Neuromuscular Junction : A Dissertation

Ramachandran, Preethi 10 August 2009 (has links)
Synaptic plasticity, in its broadest sense, can be defined as the ability of synapses to be modified structurally and functionally in response to various internal and external factors. Growing evidence has established that at the very core of these modifications are alterations in the cytoskeletal architecture. This discovery has led to the unearthing of a number of signaling pathways that might be involved in cytoskeletal regulation and also in the regulation of other aspects of synapse development and plasticity. In this regard, polarity proteins and secreted morphogens such as the Wnt proteins, typically involved in embryonic development, are emerging as critical determinants of synaptic growth and plasticity. However, their mechanism of action at synapses needs further investigation. Additionally, not much is known about how these morphogens are secreted or transported across synapses. Using the Drosophila larval NMJ as a model system, I have addressed aspects related to the issues mentioned above in the subsequent body of work. In the first half of my thesis, I have uncovered a role for the aPKC/Baz/Par-6 polarity protein complex in the regulation of the postsynaptic actin cytoskeleton in conjunction with the lipid and protein phosphatase PTEN. In the second half of my thesis, I have contributed to the elucidation of mechanisms underlying the secretion of Wg, the Drosophila Wnt homolog. Our findings suggest that Wnts might be secreted via a previously unidentified mechanism involving the release of exosome like vesicles from the presynapse and this process requires Evi/Wntless (Evi), a protein dedicated to Wnt secretion. Alterations in signaling pathways and aberrant cytoskeletal regulation lead to a variety of neurological disorders. The body of work in this thesis will provide a deeper understanding of the mechanisms involved in synaptic plasticity and provide a basis for uncovering similar pathways in the context of vertebrate synapses.
40

The Circadian Clock in Monarch Butterfly: A Tale of Two CRYs: A Dissertation

Yuan, Quan 08 May 2009 (has links)
Every fall, Northeastern America monarch butterflies (Danaus plexippus) undergo an extraordinary migration to their overwintering site in Central Mexico. During their long migration, monarch migrants use sun compass to navigate. To maintain a southward flying direction, monarch migrants compensate for the continuously changing position of the sun by providing timing information to the compass using their circadian clock. Animal circadian clocks depend primarily on a negative transcriptional feedback loop to track time. I started my work to re-construct the monarch butterfly circadian clock negative feedback loop in cell culture, focusing on homologs of Drosophila clock genes. It turned out that in addition to a Drosophila-like cryptochrome (cry1) gene, a second mammalian-like cry2 gene exists in monarch butterflies and many other insects, except in Drosophila. The two CRYs showed distinct functions in our initial assays in cultured Drosophila Schneider 2 (S2) cells. CRY2 functions as a potent transcriptional repressor, while CRY1 is light sensitive but shows no obvious transcriptional activity. The existence of two cry genes in insects changed the Drosophila-centric view of insect circadian clock. During the course of my study, our lab obtained a monarch cell line called DpN1 cells. These cells possess a light-driven clock and contributed tremendously to the research on monarch circadian clock. Using this cell line, I provided strong evidence supporting monarch CRY2’s role as a major circadian clock repressor and identified a protein-protein protective interaction cascade underlying the CRY1-mediated resetting of the molecular oscillator in DpN1 cells. I continued my work trying to understand how insect CRY2 inhibits transcription. I provided evidence suggesting the involvement of monarch PER in promoting CRY2 nuclear entry in both S2 cells and DpN1 cells. Finally, I mapped CRY2’s transcriptional inhibitory activity onto its N-terminal domain. Collectively, my research helped to change our view of insect clocks from a Drosophila-centric standpoint to a much more diverse picture. My studies also advanced the understanding of monarch circadian clock mechanism, and provides a foundation for further studies.

Page generated in 0.1769 seconds