• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 185
  • 39
  • 36
  • 26
  • 24
  • 19
  • 18
  • 9
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 418
  • 94
  • 70
  • 52
  • 43
  • 36
  • 33
  • 32
  • 32
  • 28
  • 27
  • 26
  • 25
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Supramolecular chemistry of aryl extended calix [4] pyrroles

Gil Ramírez, Guzmán 19 November 2009 (has links)
La presente tesis consta de dos vertientes interrelacionadas. La primera se centra en intentar cuantificar experimentalmente la contribución energética en disolución de la interacción anión-, mediante el uso de calix[4]pirroles aril substituidos en las posiciones meso- como moléculas modelo. El trabajo realizado muestra que la interacción anión- es repulsiva para anillos con valores de ESP negativos y a medida que el efecto electrón atrayente de los sustituyentes aumenta la interacción se vuelve menos repulsiva, hasta que, cuando el valor de ESP en el centro del anillo aromático es positivo la interacción se vuelve ligeramente atractiva. La segunda en el uso de estos receptores simples para obtener arquitecturas supramoleculares más complejas, y su autoensamblaje en capsulas. Los estudios muestran que calix[4]pirroles sustituidos con grupos urea en sus anillos aromáticos se autoemsamblan en capsulas diméricas en presencia de un huesped adecuado como los N-óxidos de alquil aminas y piridinas en disolventes apolares. / This thesis consists of two interrelated aspects. The first one pretends to quantify experimentally the energetic contribution in solution of the anion- interaction, using aryl extended calix[4] pyrroles substituted in their meso- positions as a model system. The work performed shows that the anion- interaction is repulsive for aromatic rings with negative ESP values, as the electron withdrawing character of the substituent increases the interaction becomes less repulsive, until eventually, when the ESP value in the center of the aromatic ring is positive the interaction turns into slightly attractive.The second one is based on the use of these simple receptors as scaffolds to obtain complex structures and their self-assembly into capsules. The studies performed show that aryl extended calix[4]pyrroles substituted with urea functions on their upper rim self-assemble into dimeric capsules in the presence of a suitable guest like the N-oxides of alkyl amines and pyridines in non-polar solvents.
192

New Paramagnetic Thiazyl Ligands and their Coordination Complexes

Morgan, Ian 22 November 2012 (has links)
A series of 1,2,3-dithiazolyl radicals have been prepared as spin-bearing radical ligands for coordination to paramagnetic transition metal and lanthanide ions to afford both interesting magnetic and potential conductive properties. The novel syntheses and full characterization of the ligands are described with the electronic properties investigated by both solution & solid-state EPR and cyclic voltammetry. The ligand structures are characterized by X-ray crystallography and the magnetic properties investigated. The ligands described herein represent the first reported 1,2,3-dithiazolyl radical ligands to coordinate to paramagnetic transition metal or lanthanide ion(s). The 1,2,3-dithiazoyl ligands described have been used to prepare a number of metal complexes and the structures have been fully characterized by X-ray crystallography. A diverse range of complexes including monomers, trimers and polymers have been synthesized and characterized. The solid-state and solution magnetic properties of the metal complexes have been investigated using a range of appropriate instrumental techniques, and are reported. The chelating properties of the 1,2,3-dithiazolyl ligands described are via an unprecedented motif. A para-naphthoquinone backbone is utilized with the fused 1,2,3dithiazolyl heterocyclic ring. The coordination geometry between the nitrogen atom and the quinone oxygen(s) allows for the variety of complexes reported, including the design objective of a polymeric paramagnetic coordination complex. A series of 1,2,5-thiadiazolyl radical anions have been prepared as spin-bearing radical ligands for the coordination to paramagnetic transition metal and lanthanide ions to enable both interesting magnetic and conductive properties. The syntheses and full characterizations are described with the electronic properties investigated by solution EPR and cyclic voltammetry. The ligand structures are characterized by X-ray crystallography and both the magnetic properties and conductivity (including Extended Hückel Theory calculations) are investigated and reported. A series of novel fluorinated 1,2,5-thiadiazole closed shell neutral ligands have been prepared and characterized. The radical anion is studied in situ by EPR. All materials generated in the synthesis were sent to the National Cancer Institute (USA) for collaboration involving clinical cancer inhibition studies and the results are reported.
193

pH changes localized to the surface of membrane transport proteins

Johnson, Danielle Elaine Unknown Date
No description available.
194

DETOXIFICATION OF SELECTED CHLORO-ORGANICS BY OXIDATION TECHNIQUE USING CHELATE MODIFIED FENTON REACTION

Li, YongChao 01 January 2007 (has links)
The use of hydroxyl radical based reaction (Fenton reaction) for the destruction of organic pollutants has been widely reported in the literature. However, the low pH requirement and rapid hydrogen peroxide consumption rate make the application of conventional Fenton reaction difficult for in-situ treatment. In this study, we conducted a modified Fenton reaction by introducing a chelating agent into the reaction system that could prevent Fe(OH)3 (s) precipitation even at a neutral pH condition and reduce the H2O2 consumption rate by controlling the Fe2+ concentration. A chelating agent (mono-chelate or poly-chelate) combines with Fe2+ or Fe3+ to form stable metal-chelate complexes in solution. This decreases the concentration of Fe2+ in the solution so that reactions can be carried for longer contact times. Experimental results (citrate was the chelating agent) for 2,4,6-trichlorophenol (TCP) showed that TCP degradations were greater than 95% after 2.5 h and 24 h reaction times at fixed pH 5 and 6, respectively. For the same reaction time, the normalized chloride formations were 85% at pH 5 and 88% at pH 6. Several other chlorinated organic compounds were also chosen as the model compounds for detoxification studies because of their chemical structures: trichloroethylene (unsaturated hydrocarbon), carbon tetrachloride (highly oxidized compound), 2,2-dichlorobiphenyl, and biphenyl (a dual-aromatic ring structure). Poly-chelating agents (such as polyacrylic acid-PAA) provide multiple Fe2+/Fe3+ binding sites in the modified Fenton reaction for the oxidation of contaminants (2,2-dichlorobiphenyl, and biphenyl) at a neutral pH environment. Numerical simulation based on the kinetic model developed from the well known Fenton reaction and iron-chelate chemistry fits experiment data well for both standard and chelate modified Fenton reactions. In this dissertation, it was proven that both monomeric (citrate) and polymeric (PAA) chelate modified Fenton reactions were effective for dechlorination of carbon tetrachloride from aqueous phase by the superoxide radical anion. On the other hand, PAA (a poly-chelating agent) can also be used for solid surface modification by polymerization of acrylic acid (monomer). The successful degradations of biphenyl and trichloroethylene by the PAA functionalized silica particles/membrane demonstrate the versatile applications of the chelate modified Fenton reaction.
195

SOLUTION AND SOLID STATE INTERACTIONS BETWEEN IONIC π-SYSTEMS

Chen, Jing 01 January 2006 (has links)
Although attractive interactions between π systems (π-π interaction) have been known for many years, understanding of its origin is still incomplete. Quantitative measuring of π-stacking is challenging due to the weak nature of the π-π interaction. This dissertation aims at elucidating a quantitative conformational analysis by NMR ring current anisotropy of an organic compound capable of intramolecular π-stacking in solution and studying charge effects on the stacking of π-systems. This dissertation offers four contributions to the area. (1) A general approach to four-state, conformational analysis based on the magnetic anisotropy of molecules undergoing fast dynamic exchange is described. (2) Study unveiled the importance of charges in the conformation of a dication in the solution. (3) Novel aromatic salt pairs of triangulene derivatives with the delocalized cation-anion interaction were synthesized and studied. (4) Study unveiled ionic π-systems preferred face-to-face stacking due to strong cation-π and anion-cation attractions. A general protocol for the application of magnetic anisotropy to quantitative multi-state conformational analysis of molecules undergoing fast conformational exchange was suggested in the current study. The reliability of this method of conformational analysis was checked by the mass balance. VT-NMR was also conducted to study the enthalpic parameters. This technique can be further used to study canonical interactions such as ion pairing, hydrogen boning, and molecular recognition. In the current study, dependence of the probe conformations on the dispersive interactions at the aromatic edges between solvent and probes was tested by conformational distributions of the fluorinated derivatives (2b and 2c) of the probe molecule (1a). Solution and solid studies of these molecules put the previous conclusion drawn by the Cammers group in question. Current studies show that the dispersive interaction at the aromatic edge could not be the predominant force on the conformational changes in the probe molecule 1a during the fluoroalkanol perturbation. This study indicated that charges might be important in the formation of the folding conformations in the solution and solid state of 1a, 2b, and 2c. A contribution of this thesis was to prepare and study a conformational model that lacked charges. The previous molecules were charged. The solid-state structures of pyridinium-derived aromatic rings from the CSD (Cambridge Structural Database) were studied to investigate the π-π interaction between cationic π-systems in solid state. Novel aromatic salt pairs of triangulene derivatives with the delocalized cation-anion interaction were synthesized to study the π-π interaction between two aromatic rings that carried opposite charges. This study showed that the interaction between ionic π-systems can be enhanced by cation-π and anion-cation attractions. The stackings of these π-systems introduce more overlap, closer packing and stronger atomic contact than that of the solid states of comparable neutral species. Cation-π and anion-cation attractions are synergistic in aromatic salts.
196

Role of Molecular Chaperones in the Biosynthesis of Anion Exchanger 1

Patterson, Sian T. 31 August 2011 (has links)
Mutations in the SLC4A1 gene result in misfolding and trafficking defects of the human erythroid (AE1) and kidney (kAE1) forms of the anion exchanger 1 glycoprotein. This affects the amount of functional protein at the cell surface, resulting in hematological and renal diseases. In this thesis, the role of the quality control system of molecular chaperones (cytosolic and ER) was examined during the biosynthesis of wild type and mutant AE1 in different cellular models. The hypothesis to be tested is that molecular chaperones are responsible for the intracellular retention of AE1 mutants. Chaperones were found to interact with AE1 and kAE1 in vitro and in vivo (HEK-293, K562, MDCK cells). Disruption of the calnexin-AE1 interaction in K562 cells did not affect the cell surface levels of wild type or mutant erythroid AE1. AE1 also trafficked to the cell surface in mouse embryonic fibroblasts completely deficient in calnexin or calreticulin. In contrast, in MDCK cells, disruption of the calnexin-kAE1 interaction allowed functional dominant (R589H, R901stop), but not misfolded kAE1 mutants (kSAO, G701D), to escape the ER and traffic to the cell surface. Calnexin is therefore not required for the cell surface expression of erythroid AE1, but can be responsible for the intracellular retention of certain kAE1 mutants in cells with the complete complement of molecular chaperones. Components involved in membrane glycoprotein folding and quality control (calnexin, ERp57, Hsc70, Hsp70), were lost at later stages during the differentiation of CD34+ erythroid progenitor cells. This suggests that the loss of molecular chaperones may facilitate the massive production of red cell glycoproteins, allowing erythroid AE1 mutants to escape quality control, traffic to the plasma membrane, and be present in mature red blood cells. These studies demonstrate that the role chaperones play varies, depending on cellular context. By understanding the cellular context and factors involved, therapeutic strategies may be tailored to deal with protein misfolding diseases, and in the case of kAE1, rescue the cell surface trafficking of misfolded, but functional, transport protein using pharmacological modulators.
197

Role of Molecular Chaperones in the Biosynthesis of Anion Exchanger 1

Patterson, Sian T. 31 August 2011 (has links)
Mutations in the SLC4A1 gene result in misfolding and trafficking defects of the human erythroid (AE1) and kidney (kAE1) forms of the anion exchanger 1 glycoprotein. This affects the amount of functional protein at the cell surface, resulting in hematological and renal diseases. In this thesis, the role of the quality control system of molecular chaperones (cytosolic and ER) was examined during the biosynthesis of wild type and mutant AE1 in different cellular models. The hypothesis to be tested is that molecular chaperones are responsible for the intracellular retention of AE1 mutants. Chaperones were found to interact with AE1 and kAE1 in vitro and in vivo (HEK-293, K562, MDCK cells). Disruption of the calnexin-AE1 interaction in K562 cells did not affect the cell surface levels of wild type or mutant erythroid AE1. AE1 also trafficked to the cell surface in mouse embryonic fibroblasts completely deficient in calnexin or calreticulin. In contrast, in MDCK cells, disruption of the calnexin-kAE1 interaction allowed functional dominant (R589H, R901stop), but not misfolded kAE1 mutants (kSAO, G701D), to escape the ER and traffic to the cell surface. Calnexin is therefore not required for the cell surface expression of erythroid AE1, but can be responsible for the intracellular retention of certain kAE1 mutants in cells with the complete complement of molecular chaperones. Components involved in membrane glycoprotein folding and quality control (calnexin, ERp57, Hsc70, Hsp70), were lost at later stages during the differentiation of CD34+ erythroid progenitor cells. This suggests that the loss of molecular chaperones may facilitate the massive production of red cell glycoproteins, allowing erythroid AE1 mutants to escape quality control, traffic to the plasma membrane, and be present in mature red blood cells. These studies demonstrate that the role chaperones play varies, depending on cellular context. By understanding the cellular context and factors involved, therapeutic strategies may be tailored to deal with protein misfolding diseases, and in the case of kAE1, rescue the cell surface trafficking of misfolded, but functional, transport protein using pharmacological modulators.
198

Simultaneous clarification and purification of recombinant penicillin G acylase using tangential flow filtration anion-exchange membrane chromatography

Orr, Valerie 29 March 2012 (has links)
Downstream purification often represents the most cost-intensive step in the manufacturing of recombinant proteins. Conventional purification processes are lengthy, technically complicated, product specific and time-consuming. To address this issue, herein we develop a one step purification system that due to the nature of the non-selective secretion system and the versatility of ion-exchange membrane chromatography can be widely applied to the production of many recombinant proteins. This was achieved through the integration of the intrinsically coupled upstream, midstream and downstream processes, a connection that is rarely exploited. A bioprocess for effective production and purification of penicillin G acylase (PAC) was developed. PAC was overexpressed in a genetically engineered Escherichia coli strain, secreted into the cultivation medium, harvested, and purified in a single step by anion-exchange chromatography. The cultivation medium developed had a sufficiently low conductivity to allow direct application of the extracellular fraction to the anion-exchange chromatography medium while providing all of the required nutrients for sustaining cell growth and PAC overexpression. It was contrived with the purposes of (i) providing sufficient osmolarity and buffering capacity, (ii) minimizing ionic species to facilitate the binding of extracellular proteins to anion-exchange medium, and (iii) enhancing PAC expression level and secretion efficiency. Employing this medium recipe the specific PAC activity reached a high level of 487 U/L/OD600, with more than 90% was localized in the extracellular medium. Both, the osmotic pressure and induction conditions were found to be critical for optimal culture performance. Furthermore, formation of inclusion bodies associated with PAC overexpression tended to arrest cell growth, leading to potential cell lysis. iv At harvest, the whole non-clarified culture broth was applied directly to a tangential flow filtration anion-exchange membrane chromatography system. One-step purification of recombinant PAC was achieved based on the dual nature of membrane chromatography (i.e. microfiltration-sized pores and anion-exchange chemistry). Due to their size, cells remained in the retentate while the extracellular medium penetrated the membrane. Most contaminate proteins were captured by the anion-exchange membrane, whereas the purified PAC was collected in the filtrate. The batch time for both cultivation and purification was less than 24 h and recombinant PAC with high purity (19 U/mg), process yield (74%), and productivity (41 mg/L) was obtained.
199

Xanthene-based Artificial Enzymes And A Dimeric Calixpyrrole As A Chromogenic Chemosensor

Saki, Neslihan 01 September 2004 (has links) (PDF)
This thesis covers the combination of two seperate work accomplished during the throughout the study. In the first part of the study, xanthene based artificial enzymes were synthesized, and kinetic hydrolysis studies done. Artificial enzyme design is an active field of supramolecular chemistry and metalloenzymes are attractive targets in such studies. Enzymatic catalysis is essentially a &lsquo / multifuctional&rsquo / catalysis. As part of our work, we designed and synthesized three novel xanthene derivatives. All three model contain Zn(II) in their active sites. Using the model substrate p-nitrophenyl acetate, we showed that the bifunctional model is at least an order of magnitude more active in catalyzing the hydrolysis of the substrate. Compared to the uncatalyzed hydrolysis reaction of the p-nitrophenyl ester at pH 7.0, the bifunctional model complex showed a 5714-fold rate acceleration. The second part of the thesis involves the design of a dimeric calixpyrrole as a chromogenic chemosensor. Anions are involved in a large number of biological processes and there is an interest in developing molecular sensors for these charged species. The calixpyrroles are a class of old but new heterocalixarene analogues that show considerable promise in the area of anion sensing. In this work, we have designed, synthesized and characterized a calixpyrrole-dimer anion sensor for its anion binding strength. The dimer forms stable complexes with p-nitrophenolate ion. This formed complex is used as a colorimetric sensor by displacing the chromogenic anion with the addition of various anions. like fluoride and acetate. The receptor shows strong affinity and high selectivity for fluoride anion, and also show reasonable affinity toward acetate. Thus, effective optical sensing of biochemically relevant these anions is accomplished using the calixpyrrole dimer.
200

Development Of Acyl Anion Precursors And Their Applications

Reis, Omer 01 March 2005 (has links) (PDF)
This thesis presents the development of new acyl anion precursors and their applications. The main concern of this thesis was to make use of acyl anion precursors in catalytic bond forming reactions. Toward this aim, previously known cyanide ion catalyzed cleavage of benzils was investigated in scope and efficiency in unsymmetrical benzoin condensation. Although benzils were proved to be useful entities as acyl anion precursors in benzoin condensation, they suffer some major drawbacks. Therefore acylphosphonates were proposed and investigated as a new generation of acyl anion precursor. They were found to be highly versatile and efficient in both catalytic unsymmetrical benzoin synthesis and other useful transformations.

Page generated in 0.0522 seconds