Spelling suggestions: "subject:"anionic"" "subject:"inionic""
1 |
Ion pairing and diene copolymerisationAlsamarrae, Muhanad Abdulaziz Ahmad January 1983 (has links)
No description available.
|
2 |
An equilibrium study of polyelectrolyte/surfactant/dye interactionsBrew, Henry January 2002 (has links)
No description available.
|
3 |
New calix[4]arene metal complexesDubberley, Stuart R. January 2000 (has links)
No description available.
|
4 |
Preparation and study of functionalised hydrogenated polybutadienesTait, Stephen January 1994 (has links)
No description available.
|
5 |
A new methodology for the construction of cyclic aminesHufton, Richard January 1996 (has links)
No description available.
|
6 |
Linear alkyl benzene sulphonates : metabolism and induction of lipid metabolising enzymesShackleton, Gareth Lloyd January 1994 (has links)
No description available.
|
7 |
Organisation and dynamics of an amphiphilic block copolymer at the air/water interfaceRochford, Brian R. January 1995 (has links)
This thesis describes the techniques of anionic polymerisation and characterisation used in the synthesis of poly(methyl methacrylate)/poly(ethylene oxide) diblock copolymers, the various surface techniques used to examine the interfacial properties of these copolymers spread on water, and the dynamics of these copolymers in solution. The surface techniques used were surface pressure-concentration isotherm studies, neutron reflectivity, surface quasi-elastic light scattering, and ellipsometry. The thermodynamics of micellization and dynamic properties of the copolymer solutions were investigated using light scattering. The diblock copolymers had a target composition of 50:50 mole ratio and M(_W) = 50000. In addition, several copolymers had one or both blocks holly deuterated which was necessary for the neutron reflectivity studies where contrast variation was required to apply the kinematic approximation. Surface pressure isotherms give thermodynamic information about the behaviour of polymer segments at the interface. It has been possible to interpret this behaviour by using neutron reflectivity to obtain information concerning die thickness and distribution of the PMMA and PEO blocks, and water at the interface. The trends in layer thickness have been supported by the ellipsometric measurements and interpretation of the viscoelastic SQELS data has allowed conclusions about the hydrodynamics of the polymer chains at various surface concentrations.
|
8 |
Studies on telechelic cationomeric polybutadienesRoberts, Caroline January 1990 (has links)
No description available.
|
9 |
Analytical methods for the determination of surfactants in surface waterWilletts, Matthew January 1999 (has links)
The determination of surfactants in environmental surface water is required due to recent concern over possible adverse health effects that have been associated with them. This thesis is concerned with two aspects of the analysis of non-ionic and anionic surfactants in surface water. An HPLC phase-switching method has been developed in an attempt to overcome the problem of an interfering anionic species (thought to be humic acids) that masks the presence of any linear alkylbenzene sulphonate surfactants in river water samples. This problem has arisen following the development of an HPLC method for the determination of linear alkylbenzene sulphonates and alkylphenol ethoxylate surfactants in surface water in a previous research project. The phase-switching method allows the mobile phase to be diverted to either a C[1] or C[18] column or both. The linear alkylbenzene/humic acid portion was diverted to the C[18] column after elution from the C[1] column; the alkylphenol ethoxylate portion of the sample was then allowed to separate on the C[1] column as usual. Then the linear alkylbenzene / humic acid portion was separated on the C[18] column using a different mobile phase. The method works well with standards; however, with real samples it was not clear as to the identity of the peaks that may or not be linear alkylbenzene sulphonates. In addition, recent batches of the Spherisorb C[1] column were unable to adequately resolve the nonylphenol ethoxylate ethoxymers. The reason for this loss of resolution was investigated by elemental analysis and x-ray photoelectron spectroscopy. Bulk percentage carbon and surface carbon coverage both showed a similar trend. The earlier batch of Spherisorb column that produced the best resolution of nonylphenol ethoxylate ethoxymers had the lowest surface carbon coverage and the lowest percentage bulk carbon. Recent batches of the Spherisorb column along with columns from Supelco and Hypersil contained higher levels of carbon. These results suggest that resolution of the ethoxymers is due to the unreacted hydroxyl groups on the silica surface, and that the presence of the alkyl moiety actually hinders the process. In order to account for this a "pseudo reverse phase" mechanism has been invoked for this separation. The second section of this thesis involves the development of a new qualitative and quantitative method for the determination of nonylphenol ethoxylate surfactants in surface water by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. The sample was mixed with a concentrated solution of 2,5-dihydroxybenzoic acid or alpha-cyano-4-hydroxycinnamic acid as a matrix. Approximately 1 muL of the resulting solution was added to a stainless steel target and, after evaporation of the solvent, the target was placed into the mass spectrometer. The resulting spectra showed intense [M+Na][+] and [M+K][+] adducts for each ethoxymer group. Extracted samples from the River Don analysed by this method showed a similar characteristic envelope of peaks, corresponding to sodium and potassium adducts for nonylphenol ethoxylates. For quantitative determinations Triton X-100, an octylphenol ethoxylate surfactant, was added as an internal standard. A concentrated solution of lithium chloride was also added to produce much less complicated spectra consisting of solely [M+Li][+] adducts. Good linear relationships were seen for each individual ethoxymer over the entire distribution. The method showed excellent results for spiked surface water samples, but the concentrations of nonylphenol ethoxylates in recent samples were below the current limit of detection for this method of 100 mug/L.
|
10 |
Modified layered double hydroxidesChisem, Ian January 1996 (has links)
No description available.
|
Page generated in 0.0343 seconds