• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 6
  • 2
  • Tagged with
  • 15
  • 15
  • 15
  • 11
  • 11
  • 11
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nouveaux systèmes modèles à aimantation perpendiculaire pour l'étude des effets de transfert de spin / New model systems with perpendicular magnetic anisotropy for spin transfer torque experiments

Gottwald, Matthias 30 September 2011 (has links)
Les effets de transfert de spin sont devenus un sujet de recherche majeur ces quinze dernières années. Cependant, un manque de vérifications expérimentales pour beaucoup de modèles décrivant les effets de transfert de spin peut être constaté. Ceci est surtout lié à un manque de systèmes magnétiques modèles permettant un contrôle précis des paramètres pertinents utilisés dans les modèles théoriques. Dans ce travail deux systèmes magnétiques à aimantation perpendiculaire ont été analysés : les alliages amorphes de Co1-xTbx élaborés par pulvérisation cathodique et les super-réseaux [Co/Ni](111) élaborés par épitaxie par jets moléculaires. L'anisotropie et l'aimantation, qui sont des paramètres pertinents dans beaucoup de modèles sur le transfert de spin, sont variables dans une large gamme. L'origine de cette anisotropie est discutée. La structure des domaines magnétiques est analysée et les résultats des mesures de transport sont interprétés. Pour les super-réseaux [Co/Ni](111) une forte polarisation en spin au niveau de Fermi est démontrée grâce à des expériences de photo émission résolue en spin et un coefficient d'amortissement intrinsèque [alpha] très faible est trouvé. Il est conclu que les alliages amorphes de Co1-xTbx et les super-réseaux [Co/Ni](111) sont des systèmes modèles pour le transfert de spin. / Spin transfer torque effects have become a research subject of high interest during the last 15 years. However, in order to probe the fundamental physics of spin transfer torque model systems are needed. For a model system it must be as simple as possible to tune the significant parameters (magnetic and structural). In this work we analyze the suitability of two materials for this need. The studied materials are amorphous Co1-xTbx alloys elaborated by sputtering and MBE grown [Co/Ni](111) superlattices. Both systems show perpendicular magnetic anisotropy (PMA), which provides a uniaxial anisotropy to the system. This anisotropy and the magnetization, which are significant parameters for many models on spin transfer torque, can be tuned in a large range of values. The origin of this PMA is discussed. The domain structure is analyzed and transport measurements are interpreted. In addition we show a strong spin polarization of the electrons close to the Fermi level by doing photoemission experiments. A small intrinsic Gilbert damping parameter [alpha] is found by FMR spectroscopy. We conclude that both materials are good candidates to be used as model systems for spin transfer torque
2

Jonctions tunnel magnétiques à aimantation perpendiculaire : anisotropie, magnétorésistance, couplages magnétiques et renversement par couple de transfert de spin

Nistor, Lavinia 07 October 2011 (has links) (PDF)
Le but de cette thèse est l'étude des propriétés de jonctions tunnel magnétiques à aimantation perpendiculaire, en utilisant l'anisotropie perpendiculaire présente à l'interface entre un métal magnétique et un oxyde. En théorie, dans le cas des applications mémoires, les jonctions tunnel perpendiculaires devraient nécessiter moins d'énergie (courant) pour l'écriture par courant polarisé en spin. Mais la fabrication de telles structures représente un défi et une tâche difficile puisque les propriétés de transport (TMR) et d'anisotropie imposent des contraintes sur les matériaux utilisées en limitant la fenêtre de travail, notamment en ce qui concerne l'épaisseur des couches magnétiques. Pour atteindre cet objectif nous avons tout d'abord étudié les propriétés de ces structures comme l'anisotropie de l'interface métal magnétique-oxyde, le transport tunnel et le couplage entre les couches magnétiques à travers la barrière isolante. L'amplitude de l'anisotropie d'interface entre un métal magnétique et un oxyde dépend de l'épaisseur des couches magnétiques, de la température de recuit et la concentration de l'oxygène à l'interface. Différentes structures ont été réalisées afin de choisir la structure la mieux adaptée pour les applications mémoires MRAM. Une corrélation entre la TMR et l'anisotropie a été observée permettant de valider l'origine de l'anisotropie perpendiculaire : la formation de liaisons métal magnétique-oxygène. Un couplage antiferromagnétique à été aussi observé entre les couches magnétiques à anisotropie perpendiculaire à travers l'oxyde. Une étude détaillée sur le couplage a été faite en fonction de la température de recuit et de l'épaisseur des couches magnétiques pour mieux comprendre l'origine du couplage et une possible relation avec l'amplitude de l'anisotropie perpendiculaire. Finalement des jonctions perpendiculaires ont été nano-lithographiées et des mesures de commutation d'aimantation par transfert de spin sur des piliers nanométriques ont été réalisées avec de faibles courants critiques.
3

Epitaxial graphene on metal for new magnetic manometric systems / Graphène épitaxié sur métal pour nouveaux systèmes magnétiques nanométriques

Vo Van, Chi 19 March 2013 (has links)
Graphène est un candidat pour la préparation de dispositifs spintroniques de nouvelle génération tirant partie de sa grande longueur de diffusion de spin et de la grande mobilité de ses porteurs de charge. En interagissant avec matériau ferromagnétique, il pourrait en outre devenir un élément actif, comme le suggèrent des études récentes par physique des surfaces, qui mettent en évidence un moment magnétique de quelques fractions de magnéton de Bohr dans le graphène en contact avec du fer, et une séparation en spin des bandes électroniques du graphène, d'environ 10 meV, par un effet Rashba au contact d'un élément de grand numéro atomique (l'or). La façon dont le graphène peut influencer les propriétés, par exemple magnétiques, des matériaux qui y sont contactés, reste peu étudiée. Les systèmes hybrides de haute qualité, constitués de graphène en contact avec des couches minces magnétiques ou des plots de taille nanométrique, sont des terrains de jeu pour explorer les deux aspects, la manipulation des propriétés du graphène par son interaction avec d'autres espèces, et vice versa. Dans le graphène contacté à des couches magnétiques ultra-minces par exemple, de forts effets d'interface pourraient être exploités pour contrôler l'aimantation du matériau magnétique. L'auto-organisation quasi-parfaite récemment découverte pour des plots nanométriques sur graphène, pourrait permettre d'explorer les interactions magnétiques, potentiellement transmises par le graphène, entre plots. Trois systèmes hybrides de haute qualité, intégrant du graphène préparé par dépôt chimique en phase vapeur sur le surface (111) de l'iridium, ont été développés sous ultra-haut vide (UHV) : des films ultra-minces de cobalt déposés sur graphène, et intercalés à température modérée entre graphène et son substrat, ainsi que des plots nanométriques riches-Co et -Fe, organisés avec une période de 2.5 nm sur le moiré entre graphène et Ir(111). Auparavant, des films de 10 nm d'Ir(111), monocristallins, déposés sur saphir, ont été développés. Ces films ont été par la suite utilisés comme substrats en remplacement de monocristaux massifs d'Ir(111). Ces nouveaux substrats ont ouvert la voie à des caractérisations multi-techniques ex situ, peu utilisées jusqu'alors pour étudier les systèmes graphène/métaux préparés sous UHV. Au moyen d'une combinaison de techniques de surface in situ et de sondes ex situ, les propriétés structurales, vibrationnelles, électroniques et magnétiques des trois nouveaux systèmes hybrides ont été caractérisées et confrontées à des calculs ab initio. Un certain nombre de propriétés remarquables ont été mises en évidence. L'interface entre graphene et cobalt implique de fortes interactions C-Co qui conduisent à une forte anisotropie magnétique d'interface, capable de pousser l'aimantation hors de la surface d'un film ultra-mince en dépit de la forte anisotropie de forme dans ces films. Cet effet est optimum dans les systèmes obtenus par intercalation entre graphène et iridium, qui sont par ailleurs naturellement protégés des pollutions de l'air. Les plots nanométriques, au contraire, semblent peu interagit avec le graphène. Des plots comprenant environ 30 atomes restent superparamagnétiques à 10 K, n'ont pas d'anisotropie magnétique, et leur aimantation est difficile à saturer, même sous 5 T. D'autre part, la taille des domaines magnétiques semble dépasser celle d'un plot unique, ce qui pourrait être le signe d'interactions magnétiques entre plots. / Graphene is a candidate for next generation spintronics devices exploiting its long spin transport length and high carrier mobility. Besides, when put in interaction with a ferromagnet, it may become an active building block, as suggested by recent surface science studies revealing few tenth of a Bohr magneton magnetic moments held by carbon atoms in graphene on iron, and a Rashba spin-orbit splitting reaching about 10 meV in graphene on a high atomic number element such as gold. The extent to which graphene may influence the properties, e.g. magnetic ones, of the materials contacted to it was barely addressed thus far. High quality hybrid systems composed of graphene in contact with magnetic thin layers or nanoclusters are playgrounds for exploring both aspects, the manipulation of the properties of graphene by interaction with other species, and vice versa. In graphene contacted to ultra-thin ferromagnetic layers for instance, strong graphene/ferromagnet interface effects could be employed in the view of manipulating the magnetization in the ferromagnet. The recently discovered close-to-perfect self-organization of nanoclusters on graphene, provides a way to probe magnetic interaction between clusters, possibly mediated by graphene. Three high quality hybrid systems relying on graphene prepared by chemical vapor deposition on the (111) surface of iridium have been developed under ultra-high vacuum (UHV): cobalt ultra-thin and flat films deposited on top of graphene, and intercalated at moderate temperature between graphene and its substrate, and self-organized cobalt- and iron-rich nanoclusters on the 2.5 nm-periodicity moiré between graphene and Ir(111). Prior to these systems, 10 nm-thick Ir(111) single-crystal thin films on sapphire were developed: they were latter employed as a substrate replacing bulk Ir(111) single-crystals usually employed. This new substrate opens the route to multi-technique characterizations, especially ex situ ones which were little employed thus far for studying graphene/metal systems prepared under UHV. Using a combination of in situ surface science techniques (scanning tunneling microscopy, x-ray magnetic circular dichroism, spin-polarized low-energy electron microscopy, auger electron spectroscopy, reflection high-energy electron diffraction) and ex situ probes (x-ray diffraction, transmission electron microscopy, Raman spectroscopy, MOKE magnetometry) the structural, vibrational, electronic, and magnetic properties of the three new graphene hybrid systems were characterized and confronted to first-principle calculations. Several striking features were unveiled. The interface between graphene and cobalt involves strong C-Co interactions which are responsible for a large interface magnetic anisotropy, capable of driving the magnetization out-of-the plane of the surface of an ultra-thin film in spite of the strong shape anisotropy in such films. The effect is maximized in the system obtained by intercalation between graphene and iridium, which comes naturally air-protected. Nanoclusters, on the contrary, seem to weakly interact with graphene. Small ones, comprising ca. 30 atoms each, remain super paramagnetic at 10 K, have no magnetic anisotropy, and it turns out difficult, even with 5 T fields to saturate their magnetization. Besides, the magnetic domains size seem to exceed the size of a single cluster, possibly pointing to magnetic interactions between clusters.
4

Jonctions tunnel magnétiques à anisotropie perpendiculaire et écriture assistée thermiquement

Bandiera, Sebastien 21 October 2011 (has links) (PDF)
Dans le cadre de l'augmentation de la densité de stockage des mémoires magnétorésistives à accès direct (MRAM), les matériaux à anisotropie magnétique perpendiculaire sont particulièrement intéressants car ils possèdent une très forte anisotropie. Cependant, cette augmentation d'anisotropie induit également un accroissement de la consommation d'écriture. Un nouveau concept d'écriture assistée thermiquement a été proposé par le laboratoire SPINTEC. Le principe est de concevoir une structure très stable à température ambiante, mais qui perd son anisotropie lorsqu'elle est chauffée, facilitant ainsi l'écriture. Le but de cette thèse est de valider expérimentalement ce concept. Les premiers chapitres sont consacrés à l'optimisation des matériaux à anisotropie perpendiculaire que sont les multicouches (Co/Pt), (Co/Pd) et (Co/Tb). Leur intégration dans une jonction tunnel magnétique est ensuite présentée. L'évolution de l'anisotropie en température, paramètre crucial au bon fonctionnement de l'assistance thermique, a également été étudiée. Enfin, il est démontré que l'écriture thermiquement assistée est particulièrement efficace : les structures développées présentent une consommation d'écriture réduite par rapport aux structures classiques et une forte stabilité à température ambiante.
5

Jonctions tunnel magnétiques à aimantation perpendiculaire : anisotropie, magnétorésistance, couplages magnétiques et renversement par couple de transfert de spin / Perpendicular magnetic tunnel junctions : anisotrpy, magnetoresistance, indirect exchange coupling and spin torque switching phenomena

Nistor, Lavinia 07 October 2011 (has links)
Le but de cette thèse est l'étude des propriétés de jonctions tunnel magnétiques à aimantation perpendiculaire, en utilisant l'anisotropie perpendiculaire présente à l'interface entre un métal magnétique et un oxyde. En théorie, dans le cas des applications mémoires, les jonctions tunnel perpendiculaires devraient nécessiter moins d'énergie (courant) pour l'écriture par courant polarisé en spin. Mais la fabrication de telles structures représente un défi et une tâche difficile puisque les propriétés de transport (TMR) et d'anisotropie imposent des contraintes sur les matériaux utilisées en limitant la fenêtre de travail, notamment en ce qui concerne l'épaisseur des couches magnétiques. Pour atteindre cet objectif nous avons tout d'abord étudié les propriétés de ces structures comme l'anisotropie de l'interface métal magnétique-oxyde, le transport tunnel et le couplage entre les couches magnétiques à travers la barrière isolante. L'amplitude de l'anisotropie d'interface entre un métal magnétique et un oxyde dépend de l'épaisseur des couches magnétiques, de la température de recuit et la concentration de l'oxygène à l'interface. Différentes structures ont été réalisées afin de choisir la structure la mieux adaptée pour les applications mémoires MRAM. Une corrélation entre la TMR et l'anisotropie a été observée permettant de valider l'origine de l'anisotropie perpendiculaire : la formation de liaisons métal magnétique-oxygène. Un couplage antiferromagnétique à été aussi observé entre les couches magnétiques à anisotropie perpendiculaire à travers l'oxyde. Une étude détaillée sur le couplage a été faite en fonction de la température de recuit et de l'épaisseur des couches magnétiques pour mieux comprendre l'origine du couplage et une possible relation avec l'amplitude de l'anisotropie perpendiculaire. Finalement des jonctions perpendiculaires ont été nano-lithographiées et des mesures de commutation d'aimantation par transfert de spin sur des piliers nanométriques ont été réalisées avec de faibles courants critiques. / The aim of this thesis is the study of magnetic tunnel junctions with perpendicularly magnetized electrodes (pMTJ), using perpendicular magnetic anisotropy (PMA) arising from the magnetic metal/oxide interfaces. For magnetic memories applications, it was predicted in theory that perpendicular junctions should need less energy (current) for spin transfer torque (STT) writing applications. However, the engineering of such structures is a real challenge and a difficult task since simultaneous transport (TMR) and PMA properties impose constraints on materials being used and also limit the working window of the device, especially in terms of magnetic layer thickness. In order to reach our goal we first studied different properties of these structures, such as the origin of PMA from the metal/oxide interface, tunnel transport and interlayer exchange coupling phenomena. The PMA at magnetic metal/oxide interface was showed to strongly depend on different parameters like annealing temperature, oxygen concentration, layer thickness etc. Several pMTJ structures were tested in order to choose the best one for MRAM memories applications. A correlation between TMR and PMA was observed and confirms the PMA origin from the magnetic metal-oxygen bond formation at the interface. Furthermore, antiferromagnetic interlayer exchange coupling was observed in our structures in the presence of out of plane anisotropy. A detailed study was made as a function of annealing temperature and layers thickness, in order to understand the origin of this coupling and its possible relationship to the anisotropy strength. Finally the STT-pMTJ concept was validated and low critical currents were observed on submicronic dots prepared by electron beam lithography.
6

Doubles jonctions tunnel magnétiques pour dispositifs spintroniques innovants / Double barrier magnetic tunnel junctions for innovative spintronic devices

Coelho, Paulo Veloso 30 October 2018 (has links)
Un des dilemmes au quel doit faire face la technologie MRAM est la réduction de la consommation énergétique et l’amélioration des vitesses d’accès aux données sans compromettre la rétention des données. Une des solutions possibles passe par les jonctions tunnel magnétiques à double barrière(JTMDB) dont l’amplitude du couple de transfert de spin de la couche de stockage peut être réglée par le choix de la configuration magnétique des électrodes. Cela permet ainsi des modes d’opération lecture/écriture plus fiables pour les MRAM. Malgré la réduction de moitié du courant de commutation, une étude précédente sur les JTMDB avec aimantation dans le plan signale des commutations indésirables en mode lecture liées au couple de transfert de spin perpendiculaire. Dans cette thèse, nous étudions plus en détail l’interaction complexe entre les couples de transfert de spin planaire et perpendiculaire dans ces structures à double barrière. Les mesures effectuées en utilisant courant DC ou des impulsions en tension de courte durée dans des JTMDB avec des barrières symétriques et asymétriques ont montré la présence du couple de transfert de spin perpendiculaire en mode lecture et en mode écriture. De plus, dans les JTMDB avec barrières symétriques en mode lecture, nous démontrons la commutation pure déclenchée par le couple de transfert de spin perpendiculaire qui est proportionnel à la tension quadratique et ajusté par le préfacteur. En outre, ce couple de transfert de spin favorise l’alignement antiparallèle entre les aimantations de la couche de stockage et les deux couches de référence. Les résultats obtenus expérimentalement sont en accord avec des simulations macrospin effectuée avec un choix adéquat des préfacteurs des couples de transfert de spin planaire et perpendiculaire. Afin de supprimer l’influence du couple de transfert de spin perpendiculaire, réduire encore plus le courant d’écriture et permettre la miniaturisation des JTM, nous avons développé et fabriqué des JTMDB avec anisotropie perpendiculaire (p-JTMDB). Des nouvelles multicouches sans couche de croissance avec une anisotropie magnétique perpendiculaire amélioré ont été conçues et introduites dans p-JTMDB fonctionnelles comme référence du haut. Les p-JTMDB optimisées ont été fabriquées en nanopiliers de diamètre inférieur à 300 nm et le couple de transfert de spin étudié expérimentalement en mode lecture et écriture. L’utilisation du W au lieu de Ta comme couche intercalaire dans la couche de stockage FeCoB/couche intercalaire/FeCoB a montré une amélioration de l’efficacité du couple de transfert de spin d’un facteur 3. En mode écriture, les p-JTMDB ont aussi démontré un considérable renforcement de l’efficacité du couple de transfert de spin par comparaison aux p-JTM à simple barrière. En mode lecture, la commutation est empêchée au centre de la région bistable mais la stabilité thermique de l’état magnétique se dégrade aux tensions élevées. Parmi plusieurs explications proposées pour ce phénomène, la réduction de la aimantation à saturation et de l’anisotropie effective avec l’augmentation de la température par effet Joule semble la plus probable selon des simulations macrospin. / One of the dilemmas faced by the present STT-MRAM technology is the reduction of the power consumption and increase of data access speed without jeopardizing the data retention. A possible solution lies on the double barrier magnetic tunnel junction (DBMTJ) where the amplitude of the spin transfer torque (STT) on the storage layer can be tuned through a proper magnetic configuration of the outer electrodes. Thus providing more reliable read/write operation modes for MRAM. Despite the reduction in half of the switching current, previous studies on DBMTJs with in-plane magnetization report undesired switchings in read mode associated with field-like torque. In this thesis, we further investigate the complex interplay between damping-like and field-like torques in these double barrierstructures. Measurements using DC current and short voltage pulses in DBMTJ with symmetric and asymmetric barriers have revealed a strong presence of the field-like torque both in write and read modes. Moreover, in DBMTJs with symmetric barriers set in read mode, we demonstrate pure field-like torque switching which is proportional to a quadratic voltage and adjusted by a b2 prefactor. Furthermore, this torque favors a antiparallel alignment between the storage layer magnetization and the two references’ magnetizations. The results obtained experimentally were in agreement with macrospin simulation performed with a proper tuning of the damping-like and field-like torque prefactors. In order to suppress the field-like torque and aiming for a further reduction of the writing currents and enhancedscalability of MTJs, we developed and realized DBMTJs with perpendicular anisotropy (p-DBMTJs). Novel seedless multilayers with improved perpendicular magnetic anisotropy to be used as top reference were designed and implemented in functional p-DBMTJs. The optimized p-DBMTJs were patterned into sub-300nm nanopillars and the spin transfer torque studied experimentally in write and read modes.The use of W instead of Ta as a spacer in the FeCoB/spacer/FeCoB composite storage layer showed a 3x improvement of STT efficiency. In write mode, p-DBMTJs have also demonstrated a considerable enhancement of STT efficiency when compared to single barrier p-MTJs. In read mode, switching has been prevented at the center of the bistable region but its thermal stability degraded with high voltage. Among several proposed explanations of this phenomenon, the reduction of the saturation magnetization and effective anisotropy with increasing temperature has been supported by macrospin simulations as the most probable one.
7

Propagation de parois magnétiques dans des films et des pistes à anisotropie magnétique perpendiculaire / Propagation de domain walls in the thin films and wires with perpendicular magnetic anisotropy

Nguyen, Ngoc-Minh 07 December 2012 (has links)
Cette thèse est consacrée à l’étude des mécanismes de propagation de parois magnétiques dans des films et des pistes magnétiques basés sur des matériaux à anisotropie magnétique perpendiculaire qui sont très prometteurs pour les mémoires magnétiques non volatiles d’ultra haute densité. Je me suis principalement intéressé à l’influence des défauts structuraux sur les mécanismes de dépiegeage de parois en utilisant la technique de microscopie Kerr ainsi que des mesures de transport. Trois résultats importants ont été mis en évidence : (1) Dans des vannes de spin de type CoNi/Cu/CoNi, il existe une forte influence du champ dipolaire généré par la couche dure qui peut influencer la nucléation parasite de paroi magnétique dans la couche libre et créer une propagation asymétrique sous l’effet d’un courant polarisé. J’ai aussi montré que dans des pistes sub-50nm, le renversement de l’aimantation s’effectue par des événements multiples de nucléation à cause de la présence de centres de piégeage fort qui bloquent la propagation ; (2) En visualisant la géométrie des domaines magnétiques et en étudiant les lois de reptation, j’ai montré la présence d’une faible densité de défauts structuraux et de faibles champs de propagation dans les multicouches texturés/amorphe de CoNi-CoFeB et cristallisés de Ta-CoFeB-MgO ; (3) J’ai finalement mis en évidence un effet du transfert de spin à de faibles densités de courant (≈5x1011 A/cm2) dans les pistes de CoNi-CoFeB. J’ai aussi montré une forte influence du champ d’Oesterd sur la propagation de parois liée à la présence de faibles champs de propagation. Finalement, dans le cas des pistes basées sur des films cristallisés de Ta-CoFeB-MgO, j’ai pu mesurer la vitesse sur 10 ordres de grandeur et montrer que les parois se propagent à des champs de propagation ultra faibles (0,1mT). / This work is focused on the study of magnetic domain wall propagation mechanisms in the thin films and wires based on materials with perpendicular magnetic anisotropy which are promissing for the non-volatile magnetic memory of ultra high density. I’m interested in the influence of structural defects on the mechanisms of domain wall propagation by using the Kerr microscopy technique and the transport measurements. Three important results were obtained: (1) In the spin valve structure of CoNi/Cu/CoNi, a strong influence of the dipolar magnetic field induced by the hard layer can generate a parasitic nucleation in the soft layer and create an asymmetric domain wall propagation driven by a spin polarized current. I also demonstrated that in sub-50nm wires, the nature of magnetization reversal process is the multiple nucleation events because of strong pinning centers that hinder the domain wall motion; (2) By observing the magnetic domain geometry et studying the creep law, I have pointed out that in the CoNi-CoFeB multilayers and the crystallized Ta-CoFeB-MgO multilayers, the structural defect density is low and the propagation fields can be reduced; (3) I found a spin-transfer effect with low current density (≈5x1011 A/cm2) in CoNi-CoFeB wires. I also demonstrated that the Oersted field can strongly influence the domain wall motion, especially in the material with low propagation field. Finally, in the Ta-CoFeB-MgO wires, I could measure a wide range of domain wall velocity and I show that the domain wall can move at a very low propagation field (0.1mT)
8

Etude des propriétés magnétiques de multicouches Fe/Dy par simulations numériques Monte Carlo

Talbot, Etienne 04 December 2007 (has links) (PDF)
Les multicouches Fe/Dy présentent des propriétés magnétiques particulières en fonction de la nature des interfaces (rugosité et interdiffusion aux interfaces). Ainsi, l'apparition d'une anisotropie magnétique perpendiculaire au plan des couches apparaît fortement corrélée à la formation d'un alliage amorphe Fe-Dy à l'interface. L'objectif de ce travail est d'étudier les propriétés magnétiques de multicouches amorphes Fe/Dy par simulations Monte Carlo pour différents types d'interfaces. Nous avons considéré un modèle d'anisotropie magnétique basé sur des résultats expérimentaux qui comprend une faible proportion de sites caractérisés par une direction d'anisotropie magnétique en moyenne uniaxiale, les autres sites ayant une direction d'anisotropie aléatoire. Nous avons mis en évidence l'existence d'un profil d'aimantation inhomogène suivant l'épaisseur de la multicouche fortement dépendant du profil de concentration. La dispersion des moments magnétiques de Dy est plus faible dans le cas d'un profil diffus, contrairement à celle des moments magnétiques de Fe. La simulation de cycles d'hystérésis nous a permis d'obtenir un bon accord qualitatif avec les résultats expérimentaux. En particulier, notre modèle d'anisotropie permet de mettre en évidence l'ouverture des cycles pour un champ appliqué dans le plan des couches en raison de l'influence de l'anisotropie aléatoire. orsque le champ appliqué est perpendiculaire au plan des couches, les cycles d'hystérésis obtenus dans le cas du profil diffus sont caractéristiques d'une anisotropie perpendiculaire.
9

Propriétés de transport et d'anisotropie de jonctions tunnel magnétiques perpendiculaires avec simple ou double barrière / Magnetic and transport properties of single and double perpendicular magnetic tunnel junctions

Cuchet, Léa 10 November 2015 (has links)
Du fait de leurs propriétés avantageuses en termes de rétention des données, densité de stockage et faible courant critique pour l'écriture par courant polarisé en spin (STT), les jonctions tunnel magnétiques à anisotropie perpendiculaire sont devenues prédominantes dans les études sur les applications aux mémoires magnétiques MRAM. Les travaux de cette thèse s'inscrivent dans ce contexte avec pour but l'amélioration des propriétés de transport et d'anisotropie de telles structures ainsi que la réalisation d'empilements encore plus complexes tels que des doubles jonctions perpendiculaires. Grâce à l'étude des propriétés magnétiques et des mesures de MagnétoRésistance Tunnel (TMR), il apparaît que pour optimiser les performances des jonctions tunnel, l'ensemble des épaisseurs des couches composant l'empilement doit être adapté. Des compromis sont souvent nécessaires pour obtenir à la fois une forte anisotropie perpendiculaire et des signaux de TMR élevés. Des études en fonction des épaisseurs magnétiques ont permis de déterminer les aimantations à saturation, épaisseurs critiques et couches mortes dans les couches de référence et de stockage de jonctions standard avec électrode libre supérieure et couverture Ta. Ce type de jonction a pu être nano-fabriqué sous forme de piliers circulaires afin de tester l'écriture par STT. Sachant que l'anisotropie perpendiculaire provient essentiellement de l'interface métal/oxyde, la couverture Ta a été ensuite remplacée par une deuxième couche de MgO, permettant d'améliorer significativement l'anisotropie de la couche libre. En introduisant une seconde référence au-dessus de cette jonction, des doubles jonctions perpendiculaires fonctionnelles ont pu être fabriquées. Des couches de stockage antiferromagnétiques synthétiques de la forme CoFeB/insert/CoFeB ont pu être développées et apparaissent suffisamment stables pour pouvoir remplacer les traditionnelles références à base de multicouches Co/Pt. / Due to their advantageous properties in terms of data retention, storage density and critical current density for Spin Transfer Torque (STT) switching, the magnetic tunnel junctions with perpendicular anisotropy have become predominant in the developments for MRAM applications. The aim of this thesis is to improve the anisotropy and transport properties of such structures and to realize even more complex stacks such as perpendicular double junctions. Studies on the magnetic properties and Tunnel MagnetoResistance (TMR) measurements showed that to optimize the performances of the junctions, all the thicknesses of the different layers constituting the stack have to be adapted. To guaranty both a large TMR as well a strong perpendicular anisotropy, compromises are most of the time needed. Studies as a function of magnetic thickness enabled to extract the saturation magnetization, the critical thickness and the magnetic dead layer thickness both in the bottom reference and the top storage layer in structures capped with Ta. This type of junction could be tested electrically after patterning the sample into nanopillars. Knowing that perpendicular anisotropy mostly arises at the metal/oxide interface, the Ta capping layer was replaced by a MgO one, leading to a huge increase in the anisotropy of the free layer. A second top reference was then added on such a stack to create functional perpendicular double junctions. CoFeB/insertion/CoFeB synthetic antiferromagnetic storage layers could be developed and were proved to be stable enough to replace the standard Co/Pt-based reference layers.
10

Etude des effets d'interfaces sur le retournement de l'aimantation dans des structures à anisotropie magnétique perpendiculaire / Study of Interface Effects on Magnetization Reversal in Magnetic Structures with Perpendicular Magnetic Anisotropy

Zhao, Xiaoxuan 06 December 2019 (has links)
Les mémoires MRAM (Magnetic Random Access Memory) sont l’une des technologies émergentes visant à devenir un dispositif de mémoire «universelle» applicable à une grande variété d’applications. La combinaison du couple de spin-orbite (SOT) résultant de l’effet Hall de spin (SHE) et de l’interaction de Dzyaloshinskii – Moriya (DMI) aux interfaces entre un métal lourd et une couche ferromagnétique s’est révélée être un mécanisme efficace pour induire une propagation de parois magnétiques chirales à des faibles densité de courant. Les dispositifs à parois magnétiques devraient constituer la prochaine génération de supports d’information en raison de leur potentiel pour des densités de stockage très élevées. Cependant, une limitation cruciale est la présence de défauts structuraux qui piègent les parois magnétiques et induisent des courants de seuil élevés ainsi que des effets stochastiques importants. L’origine du piégeage résulte de la présence de défauts structuraux aux interfaces entre la couche magnétique ultra-mince et les autres couches (isolants et/ou métaux lourds) qui induisent une distribution spatiale des propriétés magnétiques comme l’anisotropie magnétique perpendiculaire (PMA) ou le DMI. Comprendre l’influence de la structure des interfaces sur la propagation de parois et sur le DMI en particulier est cruciale pour la conception de futurs dispositifs basse consommation. C’est dans ce contexte très novateur que mon doctorat s’est focalisé sur la manipulation de la structure des interfaces dans des couches ultra-minces à anisotropie magnétique perpendiculaire. Des structures de CoFeB-MgO ont été utilisées afin de mieux comprendre l'impact de la structure des interfaces sur l’anisotropie, le DMI, la propagation de parois et les phénomènes de SOT. L’approche innovante que nous avons utilisée est basée sur l’irradiation par des ions légers pour contrôler le degré de mélange aux interfaces. Sous l’effet du mélange induit par l’irradiation, nous avons observé dans des structures de W-CoFeB-MgO une forte augmentation de la vitesse de parois dans le régime de creep, compatible avec une réduction de la densité des centres de piégeage. Nous avons aussi démontré que l'anisotropie de l'interface Ki et le DMI mesuré par propagation asymétrique de parois se comportent de la même façon en fonction du mélange aux interfaces. Finalement, nous avons fabriqué des barres de Hall afin de mesurer la commutation de l’aimantation induite par SOT. Le centre des croix de Hall a été irradié afin de diminuer localement l’anisotropie. Nous avons observé une réduction de 60% de la densité de courant critique après l’irradiation correspondant au retournement des croix de Hall irradiés par propagation de parois. Notre étude fournit de nouvelles pistes concernant le développement de mémoires magnétiques à faible consommation, de dispositifs logiques et neuromorphiques. / Magnetic Random Access Memory (MRAM), as one of the emerging technologies, aims to be a “universal” memory device for a wide variety of applications. The combination of the spin orbit torque (SOT) resulting from the spin Hall effect (SHE) and the Dzyaloshinskii–Moriya interaction (DMI) at interfaces between heavy metals and ferromagnetic layers has been demonstrated to be a powerful mean to drive efficiently domain-wall (DW) motion, which are expected to be the promising next generation of information carriers owing to ultra-low driving currents and ultra fast DW motion. However, the crucial limitation of SOT induced domain wall motion results from the presence of pinning defects that can induce large threshold currents and stochastic behaviors. Such pinning defects are strongly related to structural inhomogeneities at the interfaces between the ultra-thin ferromagnetic layer and the other materials (insulator and/or heavy metals) that induce a spatial distribution of magnetic properties such as perpendicular magnetic anisotropy (PMA) or DMI. Therefore, understanding the role of the interface structure on DW motion and DMI is crucial for the design of future low power devices.It is under this innovative context that my Ph.D. research has focused on the manipulation of interface structure in ultra-thin magnetic films with perpendicular magnetic anisotropy. CoFeB-MgO structures have been used in order to understand the impact of interface structure on anisotropy, DMI, domain wall motion and SOT phenomena. The innovative approach we have used in this PhD research is based on light ion irradiation to control the degree of intermixing at interfaces. In W-CoFeB-MgO structures with high DMI, we have observed a large increase of the DW velocity in the creep regime upon He⁺ irradiation, which is attributed to the reduction of pinning centres induced by interface intermixing. Asymmetric in-plane field-driven domain expansion experiments show that the DMI value is slightly reduced upon irradiation, and a direct relationship between DMI and interface anisotropy is demonstrated. Using local irradiated Hall bars in SOT devices, we further demonstrate that the current density for SOT induced magnetization switching through DW motion can be significantly reduced by irradiation. Our finding provides novel insights into the development of low power spintronic-memory, logic as well as neuromorphic devices.

Page generated in 0.5033 seconds