• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 29
  • 18
  • 13
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 183
  • 63
  • 24
  • 23
  • 23
  • 22
  • 21
  • 21
  • 21
  • 20
  • 17
  • 16
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

THREE-DIMENSIONAL VIBRATION ANALYSIS SATISFYING STRESS BOUNDARY CONDITIONS OF CIRCULAR AND ANNULAR

Chuang, Chin- His 30 July 2001 (has links)
In the proposed project¡Athe three - dimensional vibration of circular and annular plates is analyzed by a mixed finite element¡C Stresses¡Aas well as displacements¡A are primary variables in the mixed finite element formulation¡Atherefore¡Aall the stress and displacement boundary conditions can be imposed exactly¡CMeanwhile¡Athe proposed finite element is a modification of axisymmetric finite element which is based on three ¡V dimensional elasticity¡Aso general results of both axisymmetric and unaxisymmetric vibration of circular and annular plates can be obtained¡C Results of the present project will be compared to those by conventional displacement ¡V type finite element¡ARitz method and series method to show the difference among these theories¡CEspecially¡Athe effect of satisfying the stress boundary conditions on the unaxisymmetric vibration analyses can be demonstrated¡Awhich is not available in the literature up to date¡C
32

Theory versus experiment of the rotordynamic and leakage characteristics of smooth annular bushing oil seals

Culotta, Vittorio G. 17 February 2005 (has links)
This thesis provides a comparison of experimental rotordynamic coefficients for laminar, smooth bushing oil seals to theoretical predictions from XLLubeGT and XLAnSeal. The experimental results come from a new test rig developed at the Turbomachinery Laboratory at Texas A&M University. The two software programs were developed to predict the static and dynamic characteristics of seals. XLLubeGT is a Reynolds equation based program while XLAnSeal is based on a bulk-flow Navier- Stokes model that includes temporal and convective acceleration terms. XLAnSeal was used to predict the added-mass terms of the seals since XLLubeGT assumes those terms to be zero or negligible. The data used for input into the two seals code was the actual measured conditions from the test rig. As part of the input parameters, inlet inertia effects and thermal gradients along the seal were included. Both XLLubeGT and XLAnSeal have the capability to analyze straight bore seals with different inlet and outlet clearances – essentially a tapered seal – but seal expansion caused by the radial differential pressure across the seal bushing was not included. Theoretical and experimentally determined dynamic characteristics include stiffness, damping, inertia terms and Whirl Frequency Ratio (WFR). Seal static characteristics are also reported. They include: leakage, shaft center line loci and Reynolds numbers. Test conditions include three shaft speeds: 4000, 7000 and 10,000 rpm, three test pressures: 21, 45 and 69 bar [300, 650, and 1000 psi] and multiple eccentricities from 0.0 to 0.7. The results for the dynamic characteristics show good correlation of the experimental data to the theoretical values up to an eccentricity of about 0.5. At higher eccentricities, the theory generally under-predicts the dynamic characteristics. Inertia terms are greatly under-predicted. The results for the static characteristics also show good correlation to the experimental data, but they also have a tendency to be under-predicted at higher eccentricities.
33

Entrainment Effects on Keyhole Shape in High Intensity Beam Welding or Drilling

Kuo, Shih-ching 05 August 2009 (has links)
Here we seek to identify the conditions for the collapse of the molten metal layer surrounding a keyhole filled with vapor and liquid particles during high power density laser and electron beam welding processes. Investigating the collapse of the liquid layer is essential for a fundamental understanding of pore formation in the keyhole mode welding. We treat the collapse of the keyhole as similar to a transition between the slug and annular two-phase flows in a vertical pipe of varying cross-section. A quasi-steady, one-dimensional model for two-phase flow is developed and solved assuming that the mixture in the core is homogenous. Ignoring friction within the liquid layer and considering supersonic flow in the keyhole, the two phase flow regimes can be divided into four regions characterized by entrainment and deposition of liquid particles. Keyhole collapse occurs from entrainment, whereas the keyhole exhibits wavy shape from deposition. A condition for the formation of macro-porosity based on a fundamental understanding of annular two-phase flow is presented.
34

Experimental Study and Modelling of Spacer Grid Influence on Flow in Nuclear Fuel Assemblies

Caraghiaur Garrido, Diana January 2009 (has links)
<p>The work is focused on experimental study and modelling of spacer grid influence on single- and two-phase flow. In the experimental study a mock-up of a realistic fuel bundle with five spacer grids of thin plate spring construction was investigated. A special pressure measuring technique was used to measure pressure distribution inside the spacer. Five pressure taps were drilled in one of the rods, which could exchange position with other rods, in this way providing a large degree of freedom. Laser Doppler Velocimetry was used to measure mean local axial velocity and its fluctuating component upstream and downstream of the spacer in several subchannels with differing spacer part. The experimental study revealed an interesting behaviour. Subchannels from the interior part of the bundle display a different effect on the flow downstream of the spacer compared to subchannels close to the box wall, even if the spacer part is the same. This behaviour is not reflected in modern correlations. The modelling part, first, consisted in comparing the present experimental data to Computational Fluid Dynamics calculations. It was shown that stand-alone subchannel models could predict the local velocity, but are unreliable in prediction of turbulence enhancement due to spacer. The second part of the modelling consisted in developing a deposition model for increase due to spacer. In this study Lagrangian Particle Tracking (LPT) coupled to Discrete Random Walk (DRW) technique was used to model droplet movements through turbulent flow. The LPT technique has an advantage to model the influence of turbulence structure effect on droplet deposition, in this way presenting a generalized model in view of spacer geometry change. The verification of the applicability of LPT DRW method to model deposition in annular flow at Boiling Water Reactor conditions proved that the method is unreliable in its present state. The model calculations compare reasonably well to air-water deposition data, but display a wrong trend if the fluids have a different density ratio than air-water.</p>
35

Daily to decadal embayed beach response to wave and climate forcing

Harley, Mitchell Dean, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2009 (has links)
A multi-decadal survey program undertaken at the Collaroy-Narrabeen embayment in SE Australia identifies medium-term (~2-7 year) cycles of both erosion and accretion across the entire embayment ('beach oscillation') and at its two extremities ('beach rotation'). These cycles have been observed to respond to phase shifts in the El Ni??o/Southern Oscillation (ENSO). To investigate wave and climate controls of embayment variability in finer detail, this study combines historical surveys with 45 years of wave data from the ERA-40 reanalysis and four years of high-resolution beach measurements using RTK-GPS and image-derived survey techniques. ENSO and Southern Annular Mode (SAM) controls of wave variability in the Sydney region are first explored. In general, wave heights increase/decrease and wave directions become more easterly/southerly during La Ni??a/El Ni??o phases. A positive correlation is observed between the SAM and summer wave heights, and a negative correlation between the SAM and winter wave directions. Storm variability is observed to be modified by the ENSO, but not the SAM. In particular, La Ni??a phases are generally associated with longer duration, higher energy events from a more easterly direction when compared to those during El Ni??o phases. Wave controls of embayment variability are subsequently investigated. In the short-term (days - months), beach oscillation/rotation is observed to be the most dominant process, accounting for approx. 60%/20% of overall embayment variability. Beach oscillation is related to changes in wave height and storms, whereas beach rotation is related to changes in wave direction and/or wave period. An empirical model that estimates the beach response to individual storm events is developed. In the longer-term (months - years), beach rotation is observed to respond to both wave heights and directions. Larger waves are sheltered somewhat at the southern end, creating an apparent clockwise rotation under energetic wave conditions. Clockwise/anticlockwise rotations are also observed to follow southerly/easterly wave shifts at lags of up to 12 months. Comparisons between the ENSO and beach oscillation/rotation agree with previous observations that El Ni??o/La Ni??a phases are associated with an overall accretion/erosion and clockwise/anticlockwise rotation of the embayment. In general, the SAM shows little influence on embayment variability. While it is clear that beach oscillation is driven by cross-shore processes, to what extent beach rotation is a longshore and/or cross-shore phenomena requires further investigation.
36

Daily to decadal embayed beach response to wave and climate forcing

Harley, Mitchell Dean, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2009 (has links)
A multi-decadal survey program undertaken at the Collaroy-Narrabeen embayment in SE Australia identifies medium-term (~2-7 year) cycles of both erosion and accretion across the entire embayment ('beach oscillation') and at its two extremities ('beach rotation'). These cycles have been observed to respond to phase shifts in the El Ni??o/Southern Oscillation (ENSO). To investigate wave and climate controls of embayment variability in finer detail, this study combines historical surveys with 45 years of wave data from the ERA-40 reanalysis and four years of high-resolution beach measurements using RTK-GPS and image-derived survey techniques. ENSO and Southern Annular Mode (SAM) controls of wave variability in the Sydney region are first explored. In general, wave heights increase/decrease and wave directions become more easterly/southerly during La Ni??a/El Ni??o phases. A positive correlation is observed between the SAM and summer wave heights, and a negative correlation between the SAM and winter wave directions. Storm variability is observed to be modified by the ENSO, but not the SAM. In particular, La Ni??a phases are generally associated with longer duration, higher energy events from a more easterly direction when compared to those during El Ni??o phases. Wave controls of embayment variability are subsequently investigated. In the short-term (days - months), beach oscillation/rotation is observed to be the most dominant process, accounting for approx. 60%/20% of overall embayment variability. Beach oscillation is related to changes in wave height and storms, whereas beach rotation is related to changes in wave direction and/or wave period. An empirical model that estimates the beach response to individual storm events is developed. In the longer-term (months - years), beach rotation is observed to respond to both wave heights and directions. Larger waves are sheltered somewhat at the southern end, creating an apparent clockwise rotation under energetic wave conditions. Clockwise/anticlockwise rotations are also observed to follow southerly/easterly wave shifts at lags of up to 12 months. Comparisons between the ENSO and beach oscillation/rotation agree with previous observations that El Ni??o/La Ni??a phases are associated with an overall accretion/erosion and clockwise/anticlockwise rotation of the embayment. In general, the SAM shows little influence on embayment variability. While it is clear that beach oscillation is driven by cross-shore processes, to what extent beach rotation is a longshore and/or cross-shore phenomena requires further investigation.
37

STUDY OF MULTI- AND BROAD-BAND INTERNAL ANTENNAS FOR MOBILE APPLICATIONS

Baek, Seung Hoon 01 December 2011 (has links)
The modified aperture coupled MicroStrip Antenna (MSA) and Planar Inverted F Antenna (PIFA) for mobile applications are studied and presented in this dissertation. The designed antennas are improved multi-band and broad-band characteristics by the modification of radiating elements and/or the ground plane. The novel modified aperture coupling annular-ring antenna fed by stripline is the hybrid structure of the aperture coupling feed MSA and the proximity feed MSA. The proximity feed enable to concentrate the field strength toward the direction of the radiating element and the modified aperture layer contributes to provide the maximum coupling to the radiating element. The measurement bandwidths of the Aperture Coupling Proximity Feed Hybrid MSA #1(ACPF-HMSA#1, design #1) and ACPF-HMSA #2 (design #2) are 185MHz (7%) and 105MHz (4.1%), VSWR in less than 2, respectively. Two layers Planar Inverted F Antenna (PIFA) with the modification of the ground and radiating element was studied. The inserted T-shaped or L-shaped ground and inserted a slot and slits on radiating elements help to adjust the resonant frequencies to the target applications. The result of PIFA #3 (design #3) is presented a significant board-band characteristic on the upper band by 910MHz (from 1.45GHz to 2.36GHz) with VSWR less than 2.5. It covers GPS, DCS, PCS, and UMTS bands. Novel internal loop planar inverted F antennas (L-PIFA) with Inserted Concentrated Annular Rings (ICAR) and Inserted Loop Inductors (ILI) are presented as design #4 (ICAR-L-PIFA #4) and design #5 (ILI-L-PIFA #5), respectively. The simple loop structure consists of a meandered line. It increases the capacitance between adjacent lines. The Inserted annular-rings and loop inductors provide inductance values to the main loop antennas. Therefore, the impedance bandwidth of the design #4 is 570MHz (from 1.69GHz to 2.26GHz) with VSWR less than 2.5. And, the impedance bandwidth of the design #5 is 275MHz (from 1.63GHz to 1.905GHz) and 465MHz (from 2.19GHz to 2.655GHz) with VSWR less than 2.5.
38

Linear decomposition of the optical transfer function for annular pupils

Schwiegerling, Jim 23 August 2017 (has links)
A technique for decomposing the Optical Transfer Function (OTF) into a novel set of basis functions has been developed. The decomposition provides insight into the performance of optical systems containing both wavefront error and apodization, as well as the interactions between the various components of the pupil function. Previously, this technique has been applied to systems with circular pupils with both uniform illumination and Gaussian apodization. Here, systems with annular pupils are explored. In cases of annular pupil with simple defocus, analytic expressions for the OTF decomposition coefficients can be calculated. The annular case is not only applicable to optical systems with central obscurations, but the technique can be extended to systems with multiple ring structures. The ring structures can have constant area as is often found in zone plates and diffractive lenses or the rings can have arbitrary areas. Analytic expressions for the OTF decomposition coefficients again can be determined for ring structures with constant and quadratic phase variations. The OTF decomposition provides a general tool to analyze and compare a diverse set of optical systems.
39

Experimental investigation of the impact of non-uniform heat flux on boiling in a horizontal circular test section

Scheepers, Hannalie January 2021 (has links)
Presented here are the results from the steady state flow boiling of R245FA in a laboratory scale horizontal stainless-steel test tube with an inner diameter of 8.5 mm and a length of 900 mm at a saturation temperature of 35 °C and 40 °C. Experiments were conducted at mass fluxes ranging between 200 and 300 kg/m²s at inlet vapour qualities from 0.2 to 0.7 under uniform, and non-uniform imposed heat flux cases that are expected to exist in horizontal parabolic trough solar collectors. Nine (9) different heat flux distributions were investigated. Local and average heat transfer coefficients (HTC’s) were determined based on wall temperature measurements taken along the length and around the circumference of the test section. Through the choice of the fluid being linked to the possible usage of DSG technology in organic Rankine cycles, the qualitative trends and observed performance variations can be used to predict the same for a working fluid such as water. It was found that the non-uniformity of the heat flux greatly alters the HTC’s of the fluid undergoing boiling but has no effect on the pressure drop characteristics of the fluid undergoing boiling. Heating only on the sides of the tube yielded HTC’s that were 46 % lower than achieved under uniform heating. Heating only from the top proved to be more effective in heat transmission to the fluid than heating only from the bottom (as is the case on PTC solar fields), by only a slight margin, and both these cases yielded HTC’s that were 30 % lower than the uniform heating case. Applying a bell curve heat flux distribution over the tube walls yielded overall HTC’s that differed from the uniform case by a maximum of 5 %, even as the peak heat flux position changes around the circumference of the tube. A further study may be done to quantify the degree to which the non-uniformity of the heat flux influences the local HTC’s, and to develop correlations that may aid in predicting these cases. An integration with flow pattern mapping may also be done to solidify the understanding of the phenomenon governing these observations. / Dissertation (MEng)--University of Pretoria, 2021. / Department for International Development (DFID) through Royal Society-DFID Africa Capacity Building Initiative. / The UK Engineering and Physical Sciences Research Council (EPSRC) [grant numbers EP/T03338X/I and EP/P004709/1]. / Russian Government "Megagrant" project 075-15-2019-1888. / Mechanical and Aeronautical Engineering / MEng / Unrestricted
40

Local heat transfer coefficients in an annular passage with flow turbulation

Steyn, Rowan Marthinus January 2020 (has links)
In this experimental and numerical investigation, the use of flow turbulation was considered as a method to increase local heat transfer coefficients in annular heat transfer passages. Experimental data was obtained for cases with and without inserted ring turbulators within a horizontal annular test section using water for average Reynolds numbers ranging from 2000 to 7500 and average Prandtl numbers ranging from 6.73 to 6.79. The test section was heated uniformly on the inner annular wall and had a hydraulic diameter of 14.8mm, a diameter ratio (inner wall diameter to outer wall diameter) of 0.648, and a length to hydraulic diameter ratio of approximately 74. A set of circular cross sectioned ring-type turbulators were used which had a thickness of 1mm, a ring diameter of 15.1mm and a pitch of 50mm. It was found that the presence of the flow turbulators increased the average Nusselt number by between 33.9% and 45.8%. The experimental tests were followed by numerical simulations to identify the response in the heat transfer coefficient by changing the geometry of the turbulators. For this, the turbulator diameters were ranged from 0.5 mm to 2 mm, and the gap size (between the inner wall and a turbulator ring) ranged from 0.125 mm to 4 mm at a pitch of 50 mm. The results showed that the use of turbulators increased the Nusselt numbers by a maximum of 34.8% and that the maximum can be achieved for a turbulator diameter of 2 mm and a gap size of 0.25 mm, for all the Reynolds numbers tested. From the numeric determined pressure drop values it was found that the smaller gap size had the lowest pressure drop and the smallest turbulators also produced the lowest pressure drop. / Dissertation (MEng)--University of Pretoria 2020 / South African Centre for High Performance Computing (CHPC) / Mechanical and Aeronautical Engineering / MEng / Unrestricted

Page generated in 0.0551 seconds