• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 29
  • 18
  • 13
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 183
  • 63
  • 24
  • 23
  • 23
  • 22
  • 21
  • 21
  • 21
  • 20
  • 17
  • 16
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Flexible liners for corrosion protection of pipelines

Allison, Crispin January 2012 (has links)
Flexible plastic liners are sometimes installed into new and existing oil and gas pipelines to prevent corrosion of the pipe wall. A practical difficulty of this method is that the plastic liners are permeable to gases, which can collect and form an annular space between the liner and the pipe. If the operating pressure in the pipe decreases then the collected gas can cause the liner to collapse and block the pipe. One method for overcoming this problem is to insert vents at intervals along the liner to allow the gas to escape into the pipe during depressurisation. However, there is concern that this arrangement might lead to excessive corrosion beneath the vent where the pipe wall is exposed. The rate of corrosion is expected to be controlled by the vent size but this principle needs to be confirmed by experiment. The work described in this thesis is aimed at investigating this corrosion by experiment for a range of conditions typical of oil and gas production. A novel crevice corrosion cell was designed, consisting of an X100 carbon steel plate and a sheet of transparent Perspex, separated by a thin gasket. A small hole in the Perspex simulated a liner vent and allowed carbon dioxide to reach the steel surface. Tests were carried out in 3.5% NaCl solutions saturated with carbon dioxide at 1 bar partial pressure. Corrosion rates along the length of the annular space were measured using the Linear Polarisation Resistance (LPR) technique on pairs of insulated X100 electrodes set into the plate. The corrosion rates within the annular space have been shown to be small compared to those in the bulk solution and to diminish rapidly with distance from the vent. Mathematical modelling, based on the transport of carbon dioxide, is described to explain these findings and support the experimental work. The effectiveness of the LinerVentTM, installed over the vent, in a turbulence pipeline was demonstrated. The benefit of applying cathodic protection within the annular space was also demonstrated. The results are discussed in terms of the fundamental corrosion principles and their practical implications
52

Exploring the aerodynamic characteristics of a blown-annular wing for V/STOL aircraft

Saeed, Burhan January 2010 (has links)
This research programme explores, theoretically and experimentally, a new liftsystem for Vertical/Short Take-off and Landing (V/STOL) Aircraft. It is based upon an annular wing wrapped around a centrifugal flow generator, potentially creating a vehicle with no external moving parts, reduced vehicle aerodynamic losses compared to previous V/STOL technologies and substantially eliminating induced drag. It is shown that such a wing works best with a thick aerofoil section, and appears to offer greatest potential at a micro-aerial vehicle scale with regard to fundamental performance parameter “lift to weight ratio”. Certain efficiency losses are encountered mainly occurring from annular flow expansion and problems with achieving acceptable blower slot heights. Experimental methods are described along with results, and a comparison shows that the experimental values remain below theoretical values, partly due to flow asymmetry but possibly also other factors. Symmetrical blowing, as initially hypothesised, was found to be impracticable; this suggested use of pure upper surface blowing with Coanda effect. The modified approach was further explored and proved viable. The ultimate goal of this work was to develop an understanding and the facility to integrate the annular-wing into a vehicle to achieve controlled powered flight. To serve the purpose, issues encountered on current and past V/STOL aircraft are being investigated to set a path for further research/development and to validate/justify the design of future V/STOL aircraft. Also, presented is a feasibility study where different physical scales and propulsion systems are considered, and a turbofan has shown to achieve the best performance in terms of Range and Endurance. This privilege allows one to accurately study the V/STOL technologies around.
53

Variability of the polar stratosphere and its influence on surface weather and climate

Seviour, William J. M. January 2014 (has links)
Research during the last two decades has established that variability of the winter polar stratospheric vortex can significantly influence the troposphere, affecting the likelihood of extreme weather events and the skill of long-range weather forecasts. This influence is particularly strong following the rapid breakdown of the vortex in events known as sudden stratospheric warmings (SSWs). This thesis addresses some outstanding issues in our understanding of the dynamics of this stratospheric variability and its influence on the troposphere. First, a geometrical method is developed to characterise two-dimensional polar vortex variability. This method is also able to identify types of SSW in which the vortex is displaced from the pole and those in which it is split in two; known as displaced and split vortex events. It shown to capture vortex variability at least as well as previous methods, but has the advantage of being easily applicable to climate model simulations. This method is subsequently applied to 13 stratosphere-resolving climate models. Almost all models show split vortex events as barotropic and displaced vortex events as baroclinic; a difference also seen in observational reanalysis data. This supports the idea that split vortex events are caused by a resonant excitation of the barotropic mode. Models show consistent differences in the surface response to split and displaced vortex events which do not project stongly onto the annular mode. However, these differences are approximately co-located with lower stratospheric anomalies, suggesting that a local adjustment to stratospheric potential vorticity anomalies is the mechanism behind the different surface responses. Finally, the predictability of the polar stratosphere and its influence on the troposphere is assessed in a stratosphere-resolving seasonal forecast system. Little skill is found in the prediction of the strength of the Northern Hemisphere vortex at lead times beyond one month. However, much greater skill is found for the Southern Hemisphere vortex during austral spring. This allows for forecasts of interannual changes in ozone depletion to be inferred at lead times much beyond previous forecasts. It is further demonstrated that this stratospheric skill descends with time and leads to an enhanced surface skill at lead times of more than three months.
54

Wood density provides new opportunities for reconstructing past temperature variability from southeastern Australian trees

O'Donnell, Alison J., Allen, Kathryn J., Evans, Robert M., Cook, Edward R., Trouet, Valerie 06 1900 (has links)
Tree-ring based climate reconstructions have been critical for understanding past variability and recent trends in climate worldwide, but they are scarce in Australia. This is particularly the case for temperature: only one tree-ring width based temperature reconstruction – based on Huon Pine trees from Mt Read, Tasmania – exists for Australia. Here, we investigate whether additional tree- ring parameters derived from Athrotaxis cupressoides trees growing in the same region have potential to provide robust proxy records of past temperature variability. We measured wood properties, including tree-ring width (TRW), mean density, mean cell wall thickness (CWT), and tracheid radial diameter (TRD) of annual growth rings in Athrotaxis cupressoides, a long-lived, high-elevation conifer in central Tasmania, Australia. Mean density and CWT were strongly and negatively correlated with summer temperatures. In contrast, the summer temperature signal in TRW was weakly positive. The strongest climate signal in any of the tree-ring parameters was maximum temperature in January (mid-summer; JanTmax) and we chose this as the target climate variable for reconstruction. The model that explained most of the variance in JanTmax was based on TRW and mean density as predictors. TRW and mean density provided complementary proxies with mean density showing greater high-frequency (inter-annual to multi-year) variability and TRW showing more low-frequency (decadal to centennial-scale) variability. The final reconstruction model is robust, explaining 55% of the variance in JanTmax, and was used to reconstruct JanTmax for the last five centuries (1530–2010 C.E.). The reconstruction suggests that the most recent 60 years have been warmer than average in the context of the last ca. 500 years. This unusually warm period is likely linked to a coincident increase in the intensity of the subtropical ridge and dominance of the positive phase of the Southern Annular Mode in summer, which weaken the influence of the band of prevailing westerly winds and storms on Tasmanian climate. Our findings indicate that wood properties, such as mean density, are likely to provide significant contributions toward the development of robust climate reconstructions in the Southern Hemisphere and thus toward an improved understanding of past climate in Australasia.
55

Modeling and Optimal Design of Annular Array Based Ultrasound Pulse-Echo System

WAN, Li 18 April 2001 (has links)
The ability to numerically determine the received signal in an ultrasound pulse-echo system is very important for the development of new ultrasound applications, such as tissue characterization, complex object recognition, and identification of surface topology. The output signal from an ultrasound pulse-echo system depends on the transducer geometry, reflector shape, location and orientation, among others, therefore, only by numerical modeling can the output signal for a given measurement configuration be predicted. This thesis concerns about the numerical modeling and optimal design of annular array based ultrasound pulse-echo system for object recognition. Two numerical modeling methods have been implemented and evaluated for calculating received signal in a pulse-echo system. One is the simple, but computationally demanding Huygens Method and the other one is the computationally more efficient Diffraction Response for Extended Area Method (DREAM). The modeling concept is further extended for pulse-echo system with planar annular array. The optimal design of the ultrasound pulse-echo system is based on annular array transducer that gives us the flexibility to create a wide variety of insonifying fields and receiver characteristics. As the first step towards solving the optimization problem for general conditions, the problem of optimally identifying two specific reflectors is investigated. Two optimization methods, the straightforward, but computationally intensive Global Search Method and the efficient Waveform Alignment Method, have been investigated and compared.
56

Reflector geometry specific modeling of an annular array based ultrasound pulse-echo system

Nadkarni, Aditya 12 September 2007 (has links)
"Abstract Conventional ultrasound imaging systems use array transducers for focusing and beam steering, to improve lateral resolution and permit real-time imaging. This thesis research investigates a different use of array transducers, where the acoustic field and the receiver characteristics are designed such that the energy of the output signal from targets of a specified geometry is maximized. The output signal is the sum of the received signals obtained using all the possible combinations of transducer array elements as transmitter and receiver. This work is based on annular array transducers, but is applicable for any array configuration. The first step is the development of software for the efficient modeling of the wave interaction between transmitted field and target, and between the transducer and receiver field. Using this software, we have calculated the received signal for each combination of an array element as transmitter and the same or another array element as receiver, leading to an N x N received signal matrix for an N element array transducer. A waveform optimization algorithm is then implemented for the purpose of determining the set of delays for the individual array elements, which maximizes the energy of the sum of the received signals. In one implementation of this algorithm, the received signal with the maximum energy is considered as a reference signal, and specific delays are applied to the other signals so that any two signals produce a maximum correlation. This leads to an N x N delay matrix, which, however, is not readily implemented in a practical real-time system, which uses all the elements in an array transducer simultaneously to customize acoustic fields. Hence, the values in this delay matrix are fed into a linear programming optimizer tool to obtain a set of delay values, which makes its implementation practical. The optimized set of delays thus obtained is used to maximize the energy of the received signal for a given transducer and target geometry and hence to enhance the reflectivity of that target. It is also important to check the robustness of the optimized set of delays obtained above, for a given target geometry. Robustness refers to the sensitivity of the optimization to variation in target geometry. This aspect is also evaluated as a part of this thesis work."
57

Dynamique de la combustion dans un foyer annulaire multi-injecteurs diphasique / Combustion dynamics of an annular combustor with multiple spray injectors

Prieur, Kevin 14 December 2017 (has links)
Ces dernières décennies ont vu apparaître de nombreuses innovations dans le domaine de la combustion afin de réduire la consommation et les émissions polluantes. De nouveaux types d'injecteur, de type LPP - Lean Premixed Prevaporized, ont été mis au point permettant de diminuer le rapport combustible/air et visent à pré-vaporiser le carburant en amont de la combustion afin de mieux le mélanger à l'air issu du compresseur. Cette architecture permet une amélioration de la consommation et des émissions polluantes, mais rend les foyers annulaires plus sensibles à des phénomènes instationnaires qui perturbent le fonctionnement du système, accroissent les flux de chaleur vers les parois de la chambre, induisent des vibrations de structures, entrainent une fatigue cyclique des pièces mécaniques et dans des cas extrêmes conduisent à des dommages irréversibles. L'objectif est de poursuivre l'effort engagé au laboratoire EM2C sur ce thème et plus particulièrement sur celui de la dynamique de la combustion dans les chambres annulaires. La thèse concerne plus spécialement le cas où l'injection du combustible s'effectue sous forme liquide. La configuration reproduit sous forme idéalisée celle que l'on trouve en pratique dans les moteurs aéronautiques. La chambre, désignée sous le nom de MICCA-Spray, est équipée de 16 injecteurs swirlés pouvant être alimentés par un combustible liquide ou gazeux, permettant ainsi une combustion diphasique ou prémélangée. Le système possède des parois en quartz donnant un accès optique à la zone de flamme. Il est aussi équipé d'un ensemble de diagnostics tels des microphones, des photomultiplicateurs ainsi que des systèmes d'imagerie à haute cadence. / These last decades have seen many innovations in the field of combustion to reduce fuel consumption and pollutant emissions. New types of injector, for example LPP - Lean Premixed Prevaporized, have then been developed to reduce the fuel / air ratio and aim to pre-vaporize the fuel upstream of the combustion in order to mix it better with the air coming from the compressor. Unfortunately this architecture makes annular chambers more sensitive to unsteady phenomena which disturb the functioning of the system, increase the heat flows towards the walls of the chamber, induce vibrations of structures, cause cyclic fatigue of mechanical parts and in extreme cases lead to irreversible damage. The objective of this thesis is to continue the effort undertaken at the EM2C laboratory on this topic and more particularly on the dynamics of combustion in annular chambers comprising a set of injectors. The thesis concerns more particularly the case where the injection of the fuel takes place in liquid form. This configuration reproduces, in idealized form, what can be found in practice in aeronautical engines. It is also a configuration studied at the fundamental level. The chamber, known as MICCA-Spray, is equipped with 16 swirled injectors that can be powered by liquid or gaseous fuel, thus enabling two-phase or fully premixed combustion. The system has quartz walls giving optical access to the flame zone. It is also equipped with a set of diagnostics such as microphones, photomultipliers and high-speed imaging systems.
58

Gaz de Bose en dimension deux : modes collectifs, superfluidité et piège annulaire / Bose gas in two dimensions : collective mode, superfluidity and ring trap

De rossi, Camilla 24 November 2016 (has links)
Les gaz atomiques dégénérés représentent des systèmes modèles pour étudier la superfluidité. Ils offrent la possibilité d'explorer la physique en dimensions restreintes, profondémentdifférente par rapport au cas tridimensionnel. Nous disposons d'un gaz de Bose bidimensionnel dégénéré confiné dans un potentiel très anisotrope et dont on peut changer la géométrie dynamiquement. Une déformation contrôlée du piège permet d'exciter les modes collectifs du gaz. Nous avons fait d'abord une analyse en composantes principales du gaz, et nous avons montré que ces dernières coïncident avec les modes de Bogoliubov. Nous avons ensuite effectué une étude détaillée du mode ciseaux, dont nous nous servons pour sonder le caractère superfluide du gaz, en développant une nouvelle technique d'analyse, appelée "analyse de la moyenne locale". Enfin nous avons réalisé un piège en anneau, obtenu à l'intersection d'un piège en forme de bulle et du potentiel optique d'un faisceau qui présente un noeud d'intensité au centre, la "double nappe", et nous proposons différentes protocoles de mise en rotation des atomes dans l'anneau. / Degenerate atomic gases can be a versatile tool to study superfluidity. They also offer the possibility to explore the low-dimensions physics, which is deeply different from the three dimensional case. We prepare a degenerate Bose gas in a very anisotropic trap, dynamically adjustable. A controlled deformation of the trapping potential can excite the collective modes of the trapped cloud. First we perform a « principal components analysis » of the gas and we show that the principal components coincide with the Bogoliubov modes. We then restrain our analysis on the scissors mode, which we use to probe superfluidity of the sample, by introducing a new analysis technique, called « local average analysis ». Finally I will report on the realization of a ring trap, obtained by superposing a double sheet light beam to a bubble trap, and describe the different possibilities we planned to set atoms into rotation.
59

Left Ventricular Dynamics During Exercise in Endurance Athletes

Sundstedt, Milena January 2007 (has links)
<p>Large quantities of data have described left ventricular adaptation to endurance training, but basic concepts on left ventricular performance during exercise remain controversial. In this thesis, we present the results of studies of left ventricular dynamics during exercise in 89 endurance-trained athletes.</p><p>Using radionuclide ventriculography, 35 female and 30 male endurance athletes were studied in supine position. During supine exercise at 70% of the age-expected maximal heart rate, the adjustments in left ventricular volumes were small, suggesting a high preload before exercise. Stroke volume increased by changes in the left ventricular end-diastolic volumes but no changes were observed in the end-systolic volumes. Moreover, no significant differences were noted between male and female athletes.</p><p>Contrast echocardiography was utilized when 24 male endurance athletes were studied during upright exercise. An almost linear increase in stroke volume was seen from upright rest to upright exercise at a heart rate of 160 beats per minute. Stroke volume increased by an almost linear increase in end-diastolic volume and showed an initial small decrease in end-systolic volume. The left ventricular cavity became geometrically more spherical with the largest increase in the left ventricular end-diastolic short-axis cavity diameters in the mid and apical part of the left ventricle. Left ventricular long-axis length obtained from the epicardial apex to the middle of the mitral annulus at end-diastole showed no significant change from rest to exercise. The mitral annulus motion contributed to more than 50% of the stroke volume during exercise with no significant difference between septal and lateral annular motion at peak exercise. Major changes were observed in left ventricular filling indices during upright exercise. The mean transmitral pressure gradient showed a linear increase and increased several times as the mean diastolic time decreased, with large reductions in mean left ventricular filling time. Despite the shortened filling time, the heart was able to increase the filling rate (measured as volume per time) five times. This observation verifies that the heart has large reserves at rest and reveals the increase in capacity during exercise.</p>
60

Mathematical Modelling of Structured Reactors with Emphasis on Catalytic Combustion Reactions

Papadias, Dennis January 2001 (has links)
No description available.

Page generated in 0.0315 seconds