• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

THEORETICAL MODELING AND ANALYSIS OF AMMONIA GAS SENSING PROPERTIES OF VERTICALLY ALIGNED MULTIWALLED CARBON NANOTUBE RESISTIVE SENSORS AND ENHANCING THEIR SENSITIVITY

Poduri, Shripriya Darshini 01 January 2010 (has links)
Vertically aligned Multiwalled Carbon Nanotubes (MWCNTs) were grown in the pores of Anodized Aluminum Oxide (AAO) templates and investigated for resistive sensor applications. High Sensitivity of 23% to low concentration (100 ppm) of ammonia was observed. An equivalent circuit model was developed to understand the current flow path in the resistive sensor. This helped us in achieving high sensitivities through amorphous carbon (a-C) layer thickness tailoring by employing post-growth processing techniques like plasma etching. A simulation model in MATLAB was developed to calculate the device resistance and the change in the sensitivity as a function of device parameters. The steady state response and transient response of the model to the number of ammonia molecules and its adsorption rate were studied. Effects of oxygen plasma, argon plasma and water plasma etch on thinning of the a-C layer were studied. In order to enhance the sensitivity, the top and bottom a-C layers were replaced by a more conductive metal layer. This also helped in understanding the current flow in the device and in the estimation of the resistivity of the a-C layer.

Page generated in 0.0564 seconds