• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 474
  • 77
  • 34
  • 31
  • 29
  • 12
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 815
  • 515
  • 240
  • 230
  • 174
  • 150
  • 129
  • 98
  • 98
  • 88
  • 85
  • 83
  • 74
  • 74
  • 73
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Januarieffekten inom large cap och mid cap bolag : En studie på svenska börsmarknaden / The January effect within large cap and mid cap companies : A study on the Swedish stock market

Malmquist, Hampus, Hansson, Anton January 2020 (has links)
The stock market have received a fair amount of attention in the media recently as a result of the ongoing covid-19 pandemic. The question arouse if there is one month in the year that outperforms all other months in the stock market. A well known anomaly in the world of finance referred to as, the January effect, came up to discussion. Earlier studies of this subject have achieved different results and conclusions. Therefore, this study aims to examine if the January effect exists on mid cap and large cap companies on the Swedish stock market. To achieve this, one large cap portfolio and one mid cap portfolio both equally weighted with ten companies each were created. These two portfolios were analyzed with, among others, a well known regression model for season anomalies. The results of this study concludes that the January effect does not exist in neither of the portfolios.
302

Exploiting Discounts: Evidence from Swedish Investment Companies

Flodström, Andreas, Rosström Ejnar, Martin January 2020 (has links)
This study examines the relationship between discounts on Swedish closed-end investment companies and abnormal return. By sorting Swedish investment companies by the size of their discounts, we create monthly portfolios over a period of 15 years and construct a hedge-portfolio which generate an annualised abnormal return of 9.99%. However, in contrast to prior research, we find that the hedge-portfolio’s abnormal return is penalised by the short portfolio, which exhibits positive abnormal return. This suggests that extreme negative sentiments appear to be more pervasive than positive sentiments on the Swedish market. Hence, we argue that a strategy of only investing in investment companies with the top third of discounts is superior in a Swedish context. This strategy yields an annualised abnormal return of 13.21%.
303

Applying Machine Learning Algorithms for Anomaly Detection in Electricity Data : Improving the Energy Efficiency of Residential Buildings

Guss, Herman, Rustas, Linus January 2020 (has links)
The purpose of this thesis is to investigate how data from a residential property owner can be utilized to enable better energy management for their building stock. Specifically, this is done through the development of two machine learning models with the objective of detecting anomalies in the existing data of electricity consumption. The dataset consists of two years of residential electricity consumption for 193 substations belonging to the residential property owner Uppsalahem. The first of the developed models uses the K-means method to cluster substations with similar consumption patterns to create electricity profiles, while the second model uses Gaussian process regression to predict electricity consumption of a 24 hour timeframe. The performance of these models is evaluated and the optimal models resulting from this process are implemented to detect anomalies in the electricity consumption data. Two different algorithms for anomaly detection are presented, based on the differing properties of the two earlier models. During the evaluation of the models, it is established that the consumption patterns of the substations display a high variability, making it difficult to accurately model the full dataset. Both models are shown to be able to detect anomalies in the electricity consumption data, but the K-means based anomaly detection model is preferred due to it being faster and more reliable. It is concluded that substation electricity consumption is not ideal for anomaly detection, and that if a model should be implemented, it should likely exclude some of the substations with less regular consumption profiles.
304

IDENTIFYING UNUSUAL ENERGY CONSUMPTIONS OF HOUSEHOLDS : Using Inductive Conformal Anomaly Detection approach

Havugimana, Léonce January 2020 (has links)
No description available.
305

Anomaly Detection in a SQL database: A Retrospective Investigation

Naserinia, Vahid, Beremark, Mikael January 2022 (has links)
Insider attacks aiming at stealing data are highly common, according to recent studies, and they are carried out in precise patterns. In order to protect against these threats, additional security measures, such as access control and encryption, must be used in conjunction with tools and methods that can detect anomalies in data access. By analyzing the input query syntax and the amount of data returned in the responses, we can deduce individuals' access patterns. Our method is based on SQL queries in database log files, which allow us to build profiles of ordinary users' access behavior by their doctors. Anomalies that deviate from these characteristics are deemed anomalous and thus indicative of possible data exfiltration or misuse. This paper uses machine learning techniques in existing algorithms to detect outliers and aggregate related data into clusters. Due to the sensitivity of the real-world data and restricting access to such datasets, we have developed our logfiles that groups log lines sequentially based on time and access intervals. Generated log files containing known abnormalities are used to demonstrate the use of real datasets. Our findings demonstrate that our method can effectively detect these anomalies, albeit more research by specialists is required to ensure whether the abnormalities detected were appropriately recognized.
306

Anomaly Detection in Riding Behaviours : Using Unsupervised Machine Learning Methods on Time Series Data from Micromobility Services

Hansson, Indra, Congreve Lifh, Julia January 2022 (has links)
The global micromobility market is a fast growing market valued at USD 40.19 Billion in 2020. As the market grows, it is of great importance for companies to gain market shares in order to stay competitive and be the first choice within micromobility services. This can be achieved by, e.g., offering a safe micromobility service, for both riders and other road users. With state-of-the-art technology, accident prevention and preventing misuse of scooters and cities’ infrastructure is achievable. This study is conducted in collaboration with Voi Technology, a Swedish micromobility company that is committed to eliminate all serious injuries and fatalities in their value chain by 2030. Given such an ambition, the aim of the thesis is to evaluate the possibility of using unsupervised machine learning for anomaly detection with sensor data, to distinguish abnormal and normal riding behaviours. The study evaluates two machine learning algorithms; isolation forest and artificial neural networks, namely autoencoders. Beyond assessing the models ability to detect abnormal riding behaviours in general, they are evaluated based on their ability to find certain behaviours. By simulating different abnormal riding behaviours, model evaluation can be performed. The data preparation performed for the models include transforming the time series data into non-overlapping windows of a specific size containing descriptive statistics. The result obtained shows that finding a one-size-fits all type of anomaly detection model did not work as desired for either the isolation forest or the autoencoder. Further, the result indicate that one of the abnormal riding behaviours appears to be easier to distinguish, which motivates evaluating models created with the aim of distinguishing that specific behaviour. Hence, a simple moving average is also implemented to explore the performance of a very basic forecasting method. For this method, a similar data transformation as previously described is not performed as it utilises a sliding window of specific size, which is run on a single feature corresponding to an entire scooter ride. The result show that it is possible to isolate one type of abnormal riding behaviour using the autoencoder model. Additionally, the simple moving average model can also be utilised to detect the behaviour in question. Out of the two models, it is recommended to deploy a simple moving average due to its simplicity. / Den globala mikromobilitetsmarknaden är en snabbt växande marknad som år 2020 värderades till 40,19 miljarder USD. I takt med att marknaden växer så ökar också kraven bland företag att erbjuda produkter och tjänster av hög kvalitet, för att  erhålla en stark position på marknaden, vara konkurrenskraftiga och förbli ett förstahandsval hos sina kunder. Detta kan uppnås genom att bland annat erbjuda mikromobilitetstjänster som är säkra, för både föraren och andra trafikanter. Med hjälp av den senaste tekniken kan olyckor förebyggas och skadligt bruk av skotrar och städers infrastruktur förhindras. Följande studie utförs i samarbete med Voi Technology, ett svenskt mikromobilitetsföretag som har åtagit sig ansvaret att eliminera samtliga allvarliga skador och dödsfall i deras värdekedja till och med år 2030. I linje med en sådan ambition, är syftet med avhandlingen att utvärdera möjligheten att använda oövervakad maskininlärning för anomalidetektering bland sensordata, för att särskilja onormala och normala körbeteenden. Studien utvärderar två maskininlärningsalgoritmer; isolation forest och artificiella neurala nätverk, mer specifikt autoencoders. Utöver att bedöma modellernas förmåga att upptäcka onormala körbeteenden i allmänhet, utvärderas modellerna utifrån deras förmåga att hitta särskilda körbeteenden. Genom att simulera olika onormala körbeteenden kan modellerna evalueras. Dataförberedelsen som utförs för modellerna inkluderar omvandling av den råa tidsseriedatan till icke överlappande fönster av specifik storlek, bestående av beskrivande statistik. Det erhållna resultatet visar att varken isolation forest eller autoencodern presterar som förväntat samt att önskan om att hitta en generell modell som klarar av att detektera anomalier av olika karaktär inte verkar uppfyllas. Vidare indikerar resultatet på att ett visst onormalt körbeteende verkar enklare att särskilja än resterande, vilket motiverar att utvärdera modeller skapade i syfte att detektera det specifika beteendet. Följaktligen implementeras därför ett glidande medelvärde för att utforska prestandan hos en mycket grundläggande prediktionsmetod. För denna metod utförs inte den tidigare nämnda datatransformationen eftersom metoden använder ett glidande medelvärde som appliceras på en variabel tillhörande en fullständig åktur.  Följande analys visar att autoencoder modellen klarar av att urskilja denna typ av onormalt körbeteende. Resultatet visar även att ett glidande medelvärde klarar av att detektera körbeteendet i fråga. Av de två modellerna rekommenderas en implementering av ett glidande medelvärdet på grund av dess enkelhet.
307

Log message anomaly detection using machine learning

Farzad, Amir 05 July 2021 (has links)
Log messages are one of the most valuable sources of information in the cloud and other software systems. These logs can be used for audits and ensuring system security. Many millions of log messages are produced each day which makes anomaly detection challenging. Automating the detection of anomalies can save time and money as well as improve detection performance. In this dissertation, Deep Learning (DL) methods called Auto-LSTM, Auto-BLSTM and Auto-GRU are developed for log message anomaly detection. They are evaluated using four data sets, namely BGL, Openstack, Thunderbird and IMDB. The first three are popular log data sets while the fourth is a movie review data set which is used for sentiment classification. The results obtained show that Auto-LSTM, Auto-BLSTM and Auto-GRU perform better than other well-known algorithms. Dealing with imbalanced data is one of the main challenges in Machine Learning (ML)/DL algorithms for classification. This issue is more important with log message data as it is typically very imbalanced and negative logs are rare. Hence, a model is proposed to generate text log messages using a Sequence Generative Adversarial Network (SeqGAN) network. Then features are extracted using an Autoencoder and anomaly detection is done using a GRU network. The proposed model is evaluated with two imbalanced log data sets, namely BGL and Openstack. Results are presented which show that oversampling and balancing data increases the accuracy of anomaly detection and classification. Another challenge in anomaly detection is dealing with unlabeled data. Labeling even a small portion of logs for model training may not be possible due to the high volume of generated logs. To deal with this unlabeled data, an unsupervised model for log message anomaly detection is proposed which employs Isolation Forest and two deep Autoencoder networks. The Autoencoder networks are used for training and feature extraction, and then for anomaly detection, while Isolation Forest is used for positive sample prediction. The proposed model is evaluated using the BGL, Openstack and Thunderbird log message data sets. The results obtained show that the number of negative samples predicted to be positive is low, especially with Isolation Forest and one Autoencoder. Further, the results are better than with other well-known models. A hybrid log message anomaly detection technique is proposed which uses pruning of positive and negative logs. Reliable positive log messages are first identified using a Gaussian Mixture Model (GMM) algorithm. Then reliable negative logs are selected using the K-means, GMM and Dirichlet Process Gaussian Mixture Model (BGM) methods iteratively. It is shown that the precision for positive and negative logs with pruning is high. Anomaly detection is done using a Long Short-Term Memory (LSTM) network. The proposed model is evaluated using the BGL, Openstack, and Thunderbird data sets. The results obtained indicate that the proposed model performs better than several well-known algorithms. Last, an anomaly detection method is proposed using radius-based Fuzzy C-means (FCM) with more clusters than the number of data classes and a Multilayer Perceptron (MLP) network. The cluster centers and a radius are used to select reliable positive and negative log messages. Moreover, class probabilities are used with an expert to correct the network output for suspect logs. The proposed model is evaluated with three well-known data sets, namely BGL, Openstack and Thunderbird. The results obtained show that this model provides better results than existing methods. / Graduate
308

Anomaly detection for automated security log analysis : Comparison of existing techniques and tools / Detektion av anomalier för automatisk analys av säkerhetsloggar

Fredriksson Franzén, Måns, Tyrén, Nils January 2021 (has links)
Logging security-related events is becoming increasingly important for companies. Log messages can be used for surveillance of a system or to make an assessment of the dam- age caused in the event of, for example, an infringement. Typically, large quantities of log messages are produced making manual inspection for finding traces of unwanted activity quite difficult. It is therefore desirable to be able to automate the process of analysing log messages. One way of finding suspicious behavior within log files is to set up rules that trigger alerts when certain log messages fit the criteria. However, this requires prior knowl- edge about the system and what kind of security issues that can be expected. Meaning that any novel attacks will not be detected with this approach. It can also be very difficult to determine what normal behavior and abnormal behavior is. A potential solution to this problem is machine learning and anomaly-based detection. Anomaly detection is the pro- cess of finding patterns which do not behave like defined notion of normal behavior. This thesis examines the process of going from raw log data to finding anomalies. Both existing log analysis tools and the creation of our own proof-of-concept implementation are used for the analysis. With the use of labeled log data, our implementation was able to reach a precision of 73.7% and a recall of 100%. The advantages and disadvantages of creating our own implementation as opposed to using an existing tool is presented and discussed along with several insights from the field of anomaly detection for log analysis.
309

Anomaly Detection in Log Files Using Machine Learning

Björnerud, Philip January 2021 (has links)
Logs generated by the applications, devices, and servers contain information that can be used to determine the health of the system. Manual inspection of logs is important, for example during upgrades, to determine whether the upgrade and data migration were successful. However, manual testing is not reliable enough, and manual inspection of logs is tedious and time-­consuming. In this thesis, we propose to use the machine learning techniques K­means and DBSCAN to find anomaly sequences in log files. This research also investigated two different kinds of data representation techniques, feature vector representation, and IDF representation. Evaluation metrics such as F1 score, recall, and precision were used to analyze the performance of the applied machine learning algorithms. The study found that the algorithms have large differences regarding detection of anomalies, in which the algorithms performed better in finding the different kinds of anomalous sequences, rather than finding the total amount of them. The result of the study could help the user to find anomalous sequences, without manually inspecting the log file.
310

Detecting DoS Attack in Smart Home IoT Devices Using a Graph-Based Approach

Paudel, Ramesh, Muncy, Timothy, Eberle, William 01 December 2019 (has links)
The use of the Internet of Things (IoT) devices has surged in recent years. However, due to the lack of substantial security, IoT devices are vulnerable to cyber-attacks like Denial-of-Service (DoS) attacks. Most of the current security solutions are either computationally expensive or unscalable as they require known attack signatures or full packet inspection. In this paper, we introduce a novel Graph-based Outlier Detection in Internet of Things (GODIT) approach that (i) represents smart home IoT traffic as a real-time graph stream, (ii) efficiently processes graph data, and (iii) detects DoS attack in real-time. The experimental results on real-world data collected from IoT-equipped smart home show that GODIT is more effective than the traditional machine learning approaches, and is able to outperform current graph-stream anomaly detection approaches.

Page generated in 0.031 seconds