Spelling suggestions: "subject:"antarctic"" "subject:"antarctica""
1 |
Feeding dynamics and distribution of the hyperiid amphipod, Themisto gaudichaudii (Guérin, 1828) in the polar frontal zone, Southern OceanLange, Louise January 2006 (has links)
The population structure and feeding dynamics of the hyperiid amphipod, Themisto gaudichaudii, was investigated during two cruises of the South African National Antarctic Programme conducted in the Indian sector of the Polar Frontal Zone during austral autumn (April) 2004 and 2005. During the 2004 cruise the frontal features that delimit the PFZ converged to form a single distinctive feature. In 2005, the research cruise was conducted in the vicinity of a cold-core eddy which was spawned from the Antarctic Polar Front. Total mesozooplankton abundance and biomass during the 2004 study ranged from 55.19 to 860.57 ind. m⁻³, and from 2.60 to 38.42 mg dwt m⁻³, respectively. In 2005 the abundance and biomass ranged from 23.1 to 2160.64 ind. m⁻³, and from 0.76 to 35.16 mg dwt m⁻³, respectively. The mesozooplankton community was numerically dominated by copepods, pteropods, and ostracods during both surveys. The abundance and biomass of Themisto gaudichaudii in the region of investigation was < 0.2 ind. m⁻³ (range 0.01 to 0.15 ind. m⁻³) and < 0.06 mg dwt m⁻³ (range 0.02 to 0.06 mg dwt m⁻³) during 2004, while in 2005 the abundance and biomass of the amphipod ranged from < 0.01 to 0.2 ind. m⁻³ and < 0.01 to 0.04 mg dwt m⁻³, respectively. These values correspond to < 1% of the total mesozooplankton abundance and biomass during both surveys. T. gaudichaudii exhibited no significant spatial patterns in abundance, biomass and total length during both 2004 and 2005 (p > 0.05 in all cases). A key feature of the two investigations was the virtual absence of juveniles (total length < 15 mm) among the amphipod population, supporting the suggestion that they exhibit strong seasonal patterns in reproduction. Gut content analysis during both years indicated that for both the male and female amphipods’, copepods were the most prevalent prey species found in stomachs, followed by chaetognaths and pteropods. Results of electivity studies indicate that T. gaudichaudii is an opportunistic predator, generally feeding on the most abundant mesozooplankton prey. Results of in vitro incubations indicated that the total daily feeding rate of T. gaudichaudii during 2004 ranged from 11.45 to 20.90 ind. m⁻³ d⁻¹, which corresponds to between 0.12 and 1.64% of the total mesozooplankton standing stock. In 2005, the feeding rate ranged between 0.1 and 1.73% of the total mesozooplankton standing stock. The low predation impact of T. gaudichaudii during this study can be related to their low abundances and high interannual variability throughout the region of investigation.
|
2 |
Recent variability and trends in antarctic snowfall accumulation and near-surface air temperatureMonaghan, Andrew J. 08 March 2007 (has links)
No description available.
|
3 |
Trophodynamics of mesozooplankton in the the vicinity of the subtropical convergence in the Indian sector of the Southern OceanDaly, Ryan January 2009 (has links)
The trophodynamics of the numerically dominant mesozooplankton (200-2000 m) in the vicinity of the Subtropical Convergence (STC) in the Indian sector of the Southern Ocean during austral autumn (April / May) 2007 were investigated as part of the Southern Ocean Ecosystem Variability Study. The survey consisted of six north-south transects each bisecting the STC between 38º to 43ºS and 38º to 41º45’E. In total, 48 stations situated at 30 nautical mile intervals were occupied over a period of ten days. Hydrographic data revealed a well defined surface and sub-surface expression of the STC, which appeared to meander considerably between 41ºS and 41º15’S. Surface chlorophyll-a (chla) concentrations were low, ranging between 0.08 and 0.68 mg chl-a.m-3 and were generally dominated by the picophytoplankton (<2 m) which made up 66.6% (SD±17.6) of the total pigment. Chl-a concentrations integrated over the top 150m of the water column ranged between 11.97 and 40.07 mg chl-a.m-2 and showed no significant spatial patterns (p>0.05). Total integrated mesozooplankton abundance and biomass during the study ranged between 3934.9 and 308521.4 ind.m-2 (mean = 47198.19; SD±62411.4 ind.m-2) and between 239.8 and 4614.3 mg Dwt.m-2 (mean = 1338.58; SD ±1060.5), respectively. Again, there were no significant spatial patterns in the total mesozooplankton abundance or biomass within the region of study (p>0.05). No significant correlations were found between biological (chlorophyll-a concentrations and zooplankton abundance) and physico-chemical variables (temperature and salinity) (p>0.05). The total mesozooplankton community was numerically dominated by copepods of the genera Pleuromamma, Calanus, Oncaea and Oithona. Other important representatives of the mesozooplankton community included the tunicate, Salpa thompsoni, and the pteropod, Limacina retroversa. At the 40% similarity level, numerical analysis identified five distinct mesozooplankton groupings within the survey area. Differences between the groupings were associated with changes in the relative contribution of numerically dominant species rather than the presence or absence of individual species. No groupings were associated with any specific feature of the front within the survey area. The feeding rates of the six most numerically abundant mesozooplankton species (Calanus simillimus, Limacina retroversa, Pleuromamma abdominalis, Clausocalanus breviceps, Oncaea conifera, Salpa thompsoni) accounting for on average 39% of the total mesozooplankton counts, were investigated using the gut fluorescence technique. For all species, the total gut pigment contents during the night time were significantly higher than the daytime values (p<0.05 for all species). The gut evacuation rates (k) for selected mesozooplankton ranged between 0.14 and 0.81 h-1. The ingestion rates ranged between 147.8 and 5495.4 ng(pigm)ind-1.day-1 which corresponded to a daily ration of between 2.4 and 10.9% body carbon. The combined grazing impact of the selected species on the daily phytoplankton standing stock was highly variable and ranged between 1.2 and 174.1% with an average of 27.3% (SD±38.78%) within the survey area. The highest grazing impact (>60%) was typically associated with those stations where the pteropod, L. retroversa, and the tunicate, S. thompsoni, contributed more than 5% of the total mesozooplankton counts. No significant differences were found in the grazing impact of any or all selected species situated either north, south or in the immediate vicinity of the front (p>0.05 in all cases). The lack of defined spatial patterns in the mesozooplankton abundance and community structure suggests that the STC did not act as a significant biogeographic barrier to the distribution of mesozooplankton during the study. It is presumed that the large scale mixing event caused by a storm prior to this study was responsible for the observed lack of elevated biological activity within the region of the STC.
|
4 |
Microbial response to simulated climate change in Antarctic fellfield soilDavies, Nicholas Julian January 1997 (has links)
No description available.
|
5 |
Ecological studies of Antarctic fish with emphasis on early development of inshore stages at South GeorgiaNorth, Anthony William January 1990 (has links)
No description available.
|
6 |
Sea ice dynamicsGray, J. M. N. T. January 1991 (has links)
No description available.
|
7 |
Trace elements in Antarctic snow and airDick, A. L. January 1987 (has links)
No description available.
|
8 |
Biochemical investigation into the primary colonizers of fellfields on Signy Island, maritime AntarcticTearle, P. V. January 1987 (has links)
No description available.
|
9 |
Interpretation of regional gravity and aeromagnetic surveys of the Antarctic PeninsulaGarrett, S. W. January 1986 (has links)
No description available.
|
10 |
Sedimentology and stratigraphy of part of the Mesozoic Fossil Bluff Group, Alexander Island, AntarcticaButterworth, P. J. January 1988 (has links)
No description available.
|
Page generated in 0.0474 seconds