• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 112
  • 80
  • 18
  • 13
  • 6
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 306
  • 74
  • 51
  • 45
  • 42
  • 38
  • 37
  • 34
  • 32
  • 27
  • 27
  • 25
  • 23
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

The effect of topography on ocean flow

Hughes, Christopher William January 1992 (has links)
The rôle which topography plays in constraining ocean flow is investigated in several ways, mostly aimed at application to the Southern Ocean where topography is known to be important. The physics of topographic Rossby waves is discussed in some depth and a description of ocean flow in terms of a sum of topographic normal modes is developed. It is shown that the apparent incompleteness of topographic modes can often be circumvented by including a function which absorbs the nett input of potential vorticity. Some subtle problems with this description are dealt with, and a calculation of topographic modes for the Southern Ocean is presented, which shows that the modes are very localised, making the use of them to describe basin-wide flows difficult. The effect of interactions between stratification and topography is investigated in terms of a quasi-two-dimensional model which deals only with the depth-integrated flow, and the assumptions which go into the model are examined in detail both analytically and by calculating terms of interest from a data set produced by the Fine Resolution Antarctic Model. It is shown that advection of density in the Southern Ocean can be described to a first approximation as being due to a barotropic current with no vertical velocity, the horizontal component of the baroclinic flow producing very little effect. The balance of terms reveals interesting features in the modelled flow in the Southern Ocean, showing the value of this type of analysis. Finally, insight developed in the course of the investigation allows a simple model to be constructed representing the feedback between density advection and forcing due to density gradients. This model is used to provide an explanation for the fact that the FRAM model spins up linearly, where most simple models would predict a component of quadratic behaviour in the spin-up.
42

Dynamics of the thermosphere over Mawson, Antarctica / by P. Wardill

Wardill, P (Paul) January 1988 (has links)
Bibliography: leaves 140-151 / 151, [2] leaves : ill ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Mawson Institute, 1989
43

Mesozooplankton community structure and grazing impact in the polar frontal zone of the Southern Ocean

Bernard, Kim Sarah January 2003 (has links)
Mesozooplankton community structure and grazing impact in the Polar Frontal Zone (PFZ) of the Southern Ocean were investigated during two cruises of the South African National Antarctic Programme (SANAP), the Marion Offshore Ecosystem Variability Study I & II (MOEVS). During the first cruise (MOEVS I), a meso-scale oceanographic grid survey was conducted in the upstream region of the Prince Edward Islands (PEI) in austral autumn (April) 2001. Mesozooplankton samples, collected using a Bongo net (fitted with 200 and 300µm mesh nets) at depths between 200 and 300 m, were separated into three size fractions: 200-500 µm; 500-1000 µm; 1000-2000 µm by reverse filtration. Total surface (depth <5 m) chlorophyll-a (chl-a) concentration (measured fluorometrically) during the study ranged between 0.11 and 0.34 µg 1^(-1) and was always dominated by picophytoplankton (<2.0 µm). Total mesozooplankton abundance and biomass during the survey ranged between 49 and 1512 ind. m^(-3) and between 0.7 and 25 mg Dwt. m^(-3), respectively. Throughout the survey, the 200-500 µm class numerically dominated the mesozooplankton community, comprising an average of ~ 69% (SD = ± 12.3%). The dominant species in the 200-500 µm size fraction were the copepods Oithona similis, Calanus simillimus and Metridia lucens and the pteropod, Limacina retroversa. However, in terms of biomass, the 1000-2000 µm group was predominant, with dry weight values constituting an average of ~ 66% (SD = ± 10.2%). Biomass was dominated by carnivorous zooplankton, particularly the euphausiids, Euphausia vallentini and Thysanoessa vicina and the chaetognaths, Sagitta gazellae and Eukrohnia hamata. Three distinct groupings of stations were identified by multivariate analysis. The different station groupings identified reflect changes in the relative contributions of the rather than different species assemblages. During the second cruise (MOEVS II), conducted in April 2002 (austral autumn), mesozooplankton community structure and grazing impact were investigated at 13 stations in the west Indian sector of the PFZ. Total integrated chl-a biomass ranged between 11.17 and 28.34 mg chl-a m^(-2) and was always dominated by nano- and picophytoplankton (<20 µm). Throughout the study, small copepods, mainly Oithona similis and Ctenocalanus vanus, numerically dominated the mesozooplankton community comprising up to 85% (range 30 to 85%) of the total abundance. Grazing activity of the four most abundant copepods (O. similis, C. vanus, Calanus simillimus and Clausocalanus spp.), which comprised up to 93% of total mesozooplankton abundance, was investigated using the gut fluorescent technique. Results of gut fluorescence analyses indicated that C. simillimus, Clausocalanus spp. and Ctenocalanus vanus exhibited diel variability in gut pigments, with maximum values at various stages of the night. In contrast, O. similis did not demonstrate diel variation in gut pigment contents. Ingestion rates of the four copepods ranged from 23.23 to 1462.02 ng (pigm.) ind^(-1) day^(-1), depending on the species. The combined grazing impact of the four copepods, ranged between 1 and 36% of the phytoplankton standing stock per day, with the highest daily impact (~ 35.86%) occurring at stations in the vicinity of the Antarctic Polar Front. Among the copepods, O. similis and C. vanus were generally the most important consumers of phytoplankton biomass; together they were responsible for up to 89% (range 15 to 89%) of the total daily grazing impact. Carbon specific ingestion rates of the copepods varied between 42 and 320% body carbon per day, depending on the species. The study highlights the importance of small copepods in terms of both their significant contribution to total mesozooplankton numbers and their grazing impact on the phytoplankton standing stocks in the PFZ during austral autumn.
44

The role of the euthecosome pteropod, limacina retroversa, in the polar frontal zone, Southern Ocean

Bernard, Kim Sarah January 2007 (has links)
The aim of the present study was to assess the ecological role of the euthecosome pteropod, Limacina retroversa, in particular, and the mesozooplankton community, in general, in the pelagic ecosystem of the Polar Frontal Zone (PFZ), Southern Ocean. Data were collected from four oceanographic surveys to the Indian sector of the PFZ during austral autumn 2000, 2002, 2004 and 2005. Copepods, mainly Calanus simillimus, Oithona similis, Clausocalanus spp. and Ctenocalanus spp., typically dominated total mesozooplankton counts, accounting for, on average, between 75.5 % and 88.1 % (Mean = 77.4 %; SD = 13.4 %) of the total, during the present investigation. Results of the study indicate that L. retroversa may, at times, contribute substantially to total mesozooplankton abundances. During the study, L. retroversa contributed between 0.0 and 30.0 % (Mean = 5.3 %; SD = 7.1 %) to total mesozooplankton numbers. Significant small-scale variability in abundance and size structure of L. retroversa and abundance of copepods was minimal. Inter-annual variability, on the other hand, was significant between some years. Total pteropod numbers were greatest during April 2002 and 2004, while copepods exhibited greatest abundances during April 2004 only. Pearson’s Correlation analysis suggested that L. retroversa abundances were positively correlated to total surface chlorophyll-a (chl-a) concentrations. The significantly lower chl-a concentrations recorded during April 2005 may explain the reduced pteropod numbers observed during that survey. The size class structure of L. retroversa comprised mainly small and mediumsized individuals during all four surveys. This corresponds well with records from the northern hemisphere (sub-Arctic and Arctic waters) where Limacina spp. are reported to exhibit maximum spawning during mid to late-summer. Higher abundances of large individuals only occurred during April 2005, when chl-a concentrations were very low; possibly the result of delayed spawning, due to reduced food availability. Ingestion rates of the four most abundant copepods, determined using the gut fluorescence technique, ranged between 159.32 ng (pigm) ind⁻¹ day⁻¹ and 728.36 ng (pigm) ind⁻¹ day⁻¹ (Mean = 321.01 ng (pigm) ind⁻¹ day⁻¹; SD = 173.91 ng (pigm) ind⁻¹ day). Ingestion rates of L. retroversa were much higher, ranging from an average of 4 28.68 ng (pigm) ind⁻¹ day⁻¹ in April 2002 to 4 196.88 ng (pigm) ind⁻¹day⁻¹in April 2005 (Mean = 4157.36 ng (pigm) ind⁻¹ day⁻¹; SD = 35.37 ng (pigm) ind⁻¹day⁻¹). Average daily grazing rates for the pteropod varied between 0.39 mg (pigm) m⁻² day⁻¹ in April 2005 and 17.69 mg (pigm) m-2 day-1 in April 2004 (Mean = 6.13 mg (pigm) m⁻² day⁻¹; SD = 11.04 mg (pigm) m⁻² day⁻¹); corresponding average daily grazing impacts ranged between 8.4 % and 139.8 % of the phytoplankton standing stock in April 2005 and 2004, respectively (Mean = 48.5 %; SD = 84.5 %). Average daily grazing rates of the four copepods ranged from 4.58 mg (pigm) m⁻² day⁻¹ to 8.77 mg (pigm) m⁻² day⁻¹ -1, during April 2002 and 2004, respectively (Mean = 6.28 mg (pigm) m⁻² day⁻¹; SD = 5.94 mg (pigm) m⁻² day⁻¹). Collectively, the copepods removed an average of between 31.6 % and 89.8 % of the phytoplankton standing stock per day, during April 2002 and 2004, respectively (Mean = 70.8 %; SD = 86.7 %). The daily grazing impact of the copepods accounted for an average of between 40.4 % and 87.8 % of the total zooplankton grazing impact, during April 2004 and 2005, respectively (Mean = 75.0 %; SD = 65.5 %). L. retroversa was responsible for an average of 52.4 % and 59.5 % of the total zooplankton grazing impact, during April 2002 and 2004, respectively. However, during April 2005, when L. retroversa numbers were significantly lower than previous years, the pteropod contributed an average of only 7.5 % to the total zooplankton grazing impact. Thus, during the present investigation,the pteropod was responsible for removing a mean of 48.9 % of the available phytoplankton (SD = 74.9 %). The predation impact of the dominant carnivorous macrozooplankton and micronekton in the PFZ was determined during April 2004 and 2005 using daily ration estimates obtained from the literature. Additionally, gut content analysis was used to determine the contribution of L. retroversa to the diet of the dominant predators. Average predation impact ranged from 1.1 % and 5.7 % of the total mesozooplankton standing stock during April 2004 and 2005, respectively (Mean = 3.8 %; SD = 12.3 %). Chaetognaths and euphausiids dominated total carnivore numbers and made the greatest contributions to total predation impact during both years. Copepods appeared to be the main prey item of the dominant carnivorous macrozooplankton-micronekton in the region. L. retroversa was only detected in the gut contents of the amphipod, Themisto gaudichaudi, but not in either of the chaetognath species (Eukrohnia hamata and Sagitta gazellae) or the myctophid fish (Electrona spp.). The pteropod was found in 19 % of amphipod guts dissected. Pearson’s Correlation analyses showed that the four major predatory zooplankton groups found in the PFZ (chaetognaths, euphausiids, amphipods and myctophid fish) were positively correlated to abundances of L. retroversa, suggesting that the pteropod might be an important prey item for many of the carnivorous macrozooplankton/micronekton in the PFZ. To conclude, L. retroversa may play an important role in the pelagic ecosystem of the PFZ, in austral autumn. However, ocean acidification and calcium carbonate undersaturation (as a result of increased anthropogenic carbon dioxide emissions), that is predicted to occur within the next 50 – 100 years, will most likely have significant implications for the Sub-Antarctic pelagic ecosystem if L. retroversa cannot adapt quickly enough to the changes.
45

Euphausiid population structure and grazing in the Indian sector of the Antarctic Polar Frontal Zone, during austral autumn

Bernard, Anthony Thomas Firth January 2005 (has links)
The trophodynamics of the numerically dominant euphausiid species within a region of high mesoscale oceanographic variability in the southwest Indian sector of the Antarctic Polar Frontal Zone (PFZ) were investigated during the austral autumns April/May) of 2004 and 2005. During the 2004 survey, sub-surface (200 m) temperature profiles indicated that an intense frontal feature, formed by the convergence of the Sub-Antarctic Front (SAF) and the Antarctic Polar Front (APF) bisected the survey area into two distinct zones, the Sub- Antarctic Zone (SAZ) and the Antarctic Zone (AAZ). Total integrated chlorophyll-a (chl-a) biomass was typical for the region (< 25 mg chl-a m⁻²), and was dominated by picophytoplankton. Total euphausiid abundance and biomass ranged from 0.1 to 3.1 ind m⁻³ and 0.1 to 8.1 mg dwt m⁻³, respectively, and did not differ significantly between the stations occupied in the SAZ and AAZ (p > 0.05). The multivariate analysis identified two interacting mechanisms controlling the distribution patterns, abundance and biomass of the various euphausiid species, namely (1) diel changes in abundance and biomass, (2) and restricted distribution patterns associated with the different water masses. Ingestion rates were determined for five euphausiid species. E. triacantha was found to have the highest daily ingestion rate ranging from 1 226.1 to 6 029.1 ng pigm ind⁻¹d⁻¹, while the lowest daily ingestion rates were observed in the juvenile Thysanoessa species (6.4 to 943.0 ng pigm ind⁻¹ d⁻¹). The total grazing impact of the selected euphausiids ranged from < 0.1 to 20.1 μg pigm m⁻²d⁻¹, corresponding to < 0.15 % of the areal chl-a biomass. The daily ration estimates of autotrophic carbon for the euphausiids suggested that phytoplankton represented a minor component in their diets, with only the sub-adult E. vallentini consuming sufficient phytoplankton to meet their daily carbon requirements. A cyclonic cold-core eddy spawned from the region of the APF located in the southwest Indian sector of the PFZ was the dominant feature during the 2005 survey. The total areal chl-a biomass throughout the region was low, ranging between 5.6 and 11.4 mg chl-a m⁻², and was significantly higher within the core of the eddy compared to the surrounding waters (p < 0.05). RMT-8 and WP-2 total euphausiid abundance and biomass estimates were high, and ranged from 0.004 to 0.36 ind m⁻³ and 0.065 to 1.21 mg dwt m⁻³, and from 0.01 to 18.2 ind m⁻³ and 0.01 to 15.7 mg dwt m⁻³, respectively. A distinct spatial pattern in the euphausiid community was evident with the Antarctic species, Euphausia frigida, E. triacantha and E. superba predominating within the core of the eddy, while the PFZ waters were characterized by the sub-Antarctic species, E. longirostris, Stylocheiron maximum, Nematoscelis megalops and Thysanoessa gregaria. The eddy edge acted as a transition zone where species from both regions co-occurred. Within the survey area the combined ingestion rate of the six numerically dominant euphausiid species ranged between 0.02 and 5.31 μg pigm m⁻²d¹, which corresponded to a loss of between < 0.001 and 0.11 % of the available chl-a biomass. E. triacantha and juvenile T. macura were identified as the dominant grazers. There was no apparent spatial pattern in the grazing activity of the euphausiids within the region of investigation. The average daily rations of the euphausiids examined were < 2 % of their body carbon. The low daily ration of the euphausiids could be ascribed to the predominance of small picophytoplankton in the region of investigation, which are too small to be grazed efficiently by larger zooplankton. The marked spatial patterns in species composition and the elevated abundance and biomass of euphausiids, suggest that the mesoscale eddies contribute to the spatial and temporal heterogeneity of the planktonic community of the PFZ and may represent important foraging regions for many of the apex predators within the region.
46

Soil characteristics and pedogenesis on sub-Antarctic Marion Island

Lubbe, Natalie Rae 04 November 2010 (has links)
Marion Island is a sub-Antarctic volcanic island with a cold, wet climate. Much of the interior of the island is bare, with vegetation only found at lower altitudes. No soil classification has yet been undertaken for the Island, and literature on its soils and pedogenesis is sparse. As part of a broader research project on Geomorphology and Climate Change the morphological, physical, chemical, mineralogical and biological properties of soils from seven terrestrial habitats on Marion Island were analysed. It was determined that pedogenesis has taken place on Marion Island. A relationship was observed between soils and terrestrial habitats. Soils were classified according to the World Reference Base (WRB) soil classification system as Histosols, Histic Andosols, Andosols and Regosols. Generalised soil profiles were constructed for each of the seven terrestrial habitats. The spatial distributions of soil types for the Island were predicted with the use of a GIS model and are presented, together with the implications of climate change for pedogenesis and soil distribution on Marion Island. / Dissertation (MSc)--University of Pretoria, 2010. / Geography, Geoinformatics and Meteorology / MSc / Unrestricted
47

Changes in communities of Hydrozoa (Siphonophorae and Hydromedusae) across the Atlantic sector of the Southern Ocean

Kuyper, Drikus January 2020 (has links)
Magister Scientiae (Biodiversity and Conservation Biology) / 2022-01-31
48

Studies in particle astrophysics with the ANITA experiment

Banerjee, Oindree 25 October 2018 (has links)
No description available.
49

A New Monthly Pressure Dataset Poleward of 60°S since 1957

Clark, Logan Nicholas 05 October 2018 (has links)
No description available.
50

Gateway Antarctica: A Route for the EU's Global Political Agenda

Idiens, Melissa Clare January 2012 (has links)
This thesis endeavours to address an identified gap in literature on the European Union’s (EU) scientific and political engagement in the Antarctic Treaty System (ATS). The examination of this engagement begins from the initiation of the EU’s formal participation in the ATS in 1983 as a Party to the Convention for the Conservation of Antarctic Marine Living Resources (CCAMLR) mechanism, through to the EU’s contemporary role in 2011, for the facilitation of European collaborative scientific research on the Antarctic continent that remains under negotiation pending decisions on funding allocations for polar research under the EU Commission’s Horizon 2020 Framework Programme for Research and Innovation (2014-2020). Particular focus is placed on analysis into the EU’s role in global environmental discourse, for contextualised examination on the hypothesis of this research, which posits that the EU could upgrade its role in the Antarctic to further legitimise a strategic agenda for recognition as a global political actor in international relations. As most of the EU’s participation in the process of Antarctic political deliberation was afforded as an observer to the series of Special Antarctic Treaty Consultative Meetings (SATCM XI-1 to XI-IV) which developed the Protocol on Environmental Protection to the Antarctic Treaty (1991), a significant amount of analysis will focus on EU and Member State involvement in the development of this Protocol. There is also a supplementary exploration of Europeanisation of French foreign policy over this period. In addition to contributing to the academic literature, recommendations concerning the future of the EU’s scientific and political Antarctic engagement could be used as informative and topical research for a mixed audience of European Union (EU) strategists, policy-makers and officials who are tasked with furthering the development of the EU into a global political actor. It could also be of interest to those people in the Antarctic community who might opportunistically seek to maximise the benefits of an increase in direct and indirect EU participation in the Antarctic, particularly the availability of EU funding for Antarctic scientific research.

Page generated in 0.0564 seconds