Spelling suggestions: "subject:"antarctic seja ice"" "subject:"antarctica seja ice""
1 |
The Southern Hemisphere Westerlies and the ocean carbon cycle: the influence of climate model wind biases and human induced changes.Swart, Neil Cameron 20 June 2013 (has links)
The ocean is the largest sink of anthropogenic carbon from the atmosphere and therefore the magnitude of ocean carbon uptake largely determines the airborne fraction of emissions and the ultimate severity of surface climate change. However, climate-feedbacks on ocean carbon uptake over the historical period and in the future are uncertain. In particular, much uncertainty in the ocean carbon response hinges on the influence of wind-driven changes in the Southern Ocean, which is the most significant region of anthropogenic carbon uptake.
Here I show that the Southern Hemisphere westerly winds simulated by the Coupled Model Intercomparison Project Phase 3 (CMIP3) and CMIP5 climate models have significant biases in their pre-industrial and satellite era-climatologies, relative to observationally based estimates. I also show that the models project the westerlies to intensify and shift poleward under anthropogenic forcing over the 20th and 21st centuries, but that they significantly underestimate the trends over the satellite era.
I then use a novel experimental design, wherein I isolate the influence of the models pre-industrial wind bias on simulations of ocean carbon uptake and climate. I do this by using the UVic Earth System Climate Model (ESCM) with an ensemble of members, each forced by the winds from an individual CMIP model.
I show here that the climate model pre-industrial wind bias can significantly increase ocean carbon uptake in transient climate change simulations, reducing the airborne fraction and projected climate change. By contrast, the simulated wind-changes over the 20th and 21st centuries reduce ocean carbon uptake, largely through an increase in outgassing from the Southern Ocean. However, I show that this transient- wind effect is i) smaller than the pre-industrial bias effect and ii) does not occur when using a variable formulation for the Gent-McWilliams coefficient of eddy diffusivity in the coarse resolution model, under simulated or observed wind-changes.
I then go on to demonstrate that the simulated transient wind-changes significantly reduce the Antarctic sea-ice area simulated by the UVic ESCM. I also test the influence of fresh water input to the Southern Ocean from dynamic Antarctic Ice Sheet mass loss, which is a forcing absent from the CMIP5 models. The magnitude of the fresh water effect is small and has little influence on the sea-ice area trends simulated by the CMIP5 models over the historical era.
These results have significant implications for previous model-based studies of the ocean carbon cycle, as well as for the quantification of the wind-induced uncertainty in future climate projections by current Earth System Models. / Graduate / 0725 / 0425 / 0415
|
2 |
The Southern Hemisphere Westerlies and the ocean carbon cycle: the influence of climate model wind biases and human induced changes.Swart, Neil Cameron 20 June 2013 (has links)
The ocean is the largest sink of anthropogenic carbon from the atmosphere and therefore the magnitude of ocean carbon uptake largely determines the airborne fraction of emissions and the ultimate severity of surface climate change. However, climate-feedbacks on ocean carbon uptake over the historical period and in the future are uncertain. In particular, much uncertainty in the ocean carbon response hinges on the influence of wind-driven changes in the Southern Ocean, which is the most significant region of anthropogenic carbon uptake.
Here I show that the Southern Hemisphere westerly winds simulated by the Coupled Model Intercomparison Project Phase 3 (CMIP3) and CMIP5 climate models have significant biases in their pre-industrial and satellite era-climatologies, relative to observationally based estimates. I also show that the models project the westerlies to intensify and shift poleward under anthropogenic forcing over the 20th and 21st centuries, but that they significantly underestimate the trends over the satellite era.
I then use a novel experimental design, wherein I isolate the influence of the model’s pre-industrial wind bias on simulations of ocean carbon uptake and climate. I do this by using the UVic Earth System Climate Model (ESCM) with an ensemble of members, each forced by the winds from an individual CMIP model.
I show here that the climate model pre-industrial wind bias can significantly increase ocean carbon uptake in transient climate change simulations, reducing the airborne fraction and projected climate change. By contrast, the simulated wind-changes over the 20th and 21st centuries reduce ocean carbon uptake, largely through an increase in outgassing from the Southern Ocean. However, I show that this transient- wind effect is i) smaller than the pre-industrial bias effect and ii) does not occur when using a variable formulation for the Gent-McWilliams coefficient of eddy diffusivity in the coarse resolution model, under simulated or observed wind-changes.
I then go on to demonstrate that the simulated transient wind-changes significantly reduce the Antarctic sea-ice area simulated by the UVic ESCM. I also test the influence of fresh water input to the Southern Ocean from dynamic Antarctic Ice Sheet mass loss, which is a forcing absent from the CMIP5 models. The magnitude of the fresh water effect is small and has little influence on the sea-ice area trends simulated by the CMIP5 models over the historical era.
These results have significant implications for previous model-based studies of the ocean carbon cycle, as well as for the quantification of the wind-induced uncertainty in future climate projections by current Earth System Models. / Graduate / 0725 / 0425 / 0415
|
3 |
Interactions between the microbial network and the organic matter in the Southern Ocean: impacts on the biological carbon pump / Interactions entre le réseau microbien et la matière organique dans l'Océan Antarctique : impacts sur la pompe biologique à carboneDumont, Isabelle 03 July 2009 (has links)
The Southern Ocean (ca. 20% of the world ocean surface) is a key place for the regulation of Earth climate thanks to its capacity to absorb atmospheric carbon dioxide (CO2) by physico-chemical and biological mechanisms. The biological carbon pump is a major pathway of absorption of CO2 through which the CO2 incorporated into autotrophic microorganisms in surface waters is transferred to deep waters. This process is influenced by the extent of the primary production and by the intensity of the remineralization of organic matter along the water column. So, the annual cycle of sea ice, through its in situ production and remineralization processes but also, through the release of microorganisms, organic and inorganic nutrients (in particular iron)into the ocean has an impact on the carbon cycle of the Southern Ocean, notably by promoting the initiation of
phytoplanktonic blooms at time of ice melting.
The present work focussed on the distribution of organic matter (OM) and its interactions with the microbial network (algae, bacteria and protozoa) in sea ice and ocean, with a special attention to the factors which regulate the biological carbon pump of the Southern Ocean. This thesis gathers data collected from a) late winter to summer in the Western Pacific sector, Western Weddell Sea and Bellingshausen Sea during three sea ice cruises ARISE, ISPOL-drifting station and SIMBA-drifting station and b) summer in the Sub-Antarctic and Polar Front Zone during the oceanographic cruise SAZ-Sense.
The sea ice covers were typical of first-year pack ice with thickness ranging between 0.3 and 1.2 m, and composed of granular and columnar ice. Sea ice temperature ranging between -8.9°C and -0.4°C, brines volume ranging between 2.9 to 28.2% and brines salinity from 10 to >100 were observed. These extreme physicochemical factors experienced by the microorganisms trapped into the semi-solid sea ice matrix therefore constitute an extreme change as compared to the open ocean. Sea ice algae were mainly composed of diatoms but autotrophic flagellates (such as dinoflagellates or Phaeocystis sp.) were also typically found in surface ice layers. Maximal algal biomass was usually observed in the bottom ice layers except during SIMBA where the maxima was localised in the top ice layers likely because of the snow and ice thickness which limit the light available in the ice cover. During early spring, the algal growth was controlled by the space availability (i.e. brine volume) while in spring/summer (ISPOL, SIMBA) the major nutrients availability inside sea ice may have
controlled algal growth. At all seasons, high concentrations of dissolved and particulate organic matter were measured in sea ice as compared to the water column. Dissolved monomers (saccharides and amino acids) were accumulated in sea ice, in particular in winter. During spring and summer, polysaccharides constitute the main
fraction of the dissolved saccharides pool. High concentrations of transparent exopolymeric particles (TEP), mainly constituted with saccharides, were present and their gel properties greatly influence the internal habitat of sea ice, by retaining the nutrients and by preventing the protozoa grazing pressure, inducing therefore an algal accumulation. The composition as well as the vertical distribution of OM in sea ice was linked to sea ice algae.
Besides, the distribution of microorganisms and organic compounds in the sea ice was also greatly influenced by the thermodynamics of the sea ice cover, as evidenced during a melting period for ISPOL and during a floodfreeze cycle for SIMBA. The bacteria distribution in the sea ice was not correlated with those of algae and organic matter. Indeed, the utilization of the accumulated organic matter by bacteria seemed to be limited by an external factor such as temperature, salinity or toxins rather than by the nature of the organic substrates, which
are partly composed of labile monomeric saccharides. Thus the disconnection of the microbial loop leading to the OM accumulation was highlighted in sea ice.
In addition the biofilm formed by TEP was also involved in the retention of cells and other compounds(DOM, POM, and inorganic nutrients such as phosphate and iron) to the brine channels walls and thus in the timing of release of ice constituents when ice melts. The sequence of release in marginal ice zone, as studied in a
microcosm experiments realized in controlled and trace-metal clean conditions, was likely favourable to the development of blooms in the marginal ice zone. Moreover microorganisms derived from sea ice (mainly <10
µm) seems able to thrive and grow in the water column as also the supply of organic nutrients and Fe seems to benefit to the pelagic microbial community.
Finally, the influence of the remineralization of organic matter by heterotrophic bacterioplankton on carbon export and biological carbon pump efficiency was investigated in the epipelagic (0-100 m) and mesopelagic(100-700 m) zones during the summer in the sub-Antarctic and Polar Front zones (SAZ and PFZ) of the Australian sector (Southern Ocean). Opposite to sea ice, bacterial biomass and activities followed Chl a and
organic matter distributions. Bacterial abundance, biomass and activities drastically decreased below depths of 100-200 m. Nevertheless, depth-integrated rates through the thickness of the different water masses showed that the mesopelagic contribution of bacteria represents a non-negligible fraction, in particular in a diatom-dominated system./
L’océan Antarctique (± 20% de la surface totale des océans) est un endroit essentiel pour la régulation du climat de notre planète grâce à sa capacité d’absorber le dioxyde de carbone (CO2) atmosphérique par des mécanismes physico-chimique et biologique. La pompe biologique à carbone est un processus majeur de fixation de CO2 par les organismes autotrophes à la surface de l’océan et de transfert de carbone organique vers le fond
de l’océan. Ce processus est influencé par l’importance de la production primaire ainsi que par l’intensité de la reminéralisation de la matière organique dans la colonne d’eau. Ainsi, le cycle annuel de la glace via sa
production/reminéralisation in situ mais aussi via l’ensemencement de l’océan avec des microorganismes et des nutriments organiques et inorganiques (en particulier le fer) a un impact sur le cycle du carbone dans l’Océan Antarctique, notamment en favorisant l’initiation d’efflorescences phytoplanctoniques dans la zone marginale de glace.
Plus précisément, nous avons étudié les interactions entre le réseau microbien (algues, bactéries et protozoaires) et la matière organique dans le but d’évaluer leurs impacts potentiels sur la pompe biologique de
carbone dans l’Océan Austral. Deux écosystèmes différents ont été étudiés : la glace de mer et le milieu océanique grâce à des échantillons prélevés lors des campagnes de glace ARISE, ISPOL et SIMBA et lors de la campagne océanographique SAZ-Sense, couvrant une période allant de la fin de l’hiver à l’été.
La glace de mer est un environnement très particulier dans lequel les microorganismes planctoniques se trouvent piégés lors de la formation de la banquise et dans lesquels ils subissent des conditions extrêmes de température et de salinité, notamment. Les banquises en océan ouvert étudiées (0,3 à 1,2 m d’épaisseur,
températures de -8.9°C à -0.4°C, volumes relatifs de saumure de 2.9 à 28.2% et salinités de saumures entre 10 et jusque >100) étaient composées de glace columnaire et granulaire. Les algues de glace étaient principalement des diatomées mais des flagellés autotrophes (tels que des dinoflagellés ou Phaeocystis sp.) ont été typiquement observés dans les couches de glace de surface. Les biomasses algales maximales se trouvaient généralement dans la couche de glace de fond sauf à SIMBA où les maxima se trouvaient en surface, probablement en raison de l’épaisseur des couches de neige et de glace, limitant la lumière disponible dans la colonne de glace. Au début du printemps, la croissance algale était contrôlée par l’espace disponible (càd le volume des saumures) tandis qu’au printemps/été, la disponibilité en nutriments majeurs a pu la contrôler. A toutes les saisons, des concentrations élevées en matière organique (MO) dissoute et particulaire on été mesurées dans la glace de mer par rapport à l’océan. Des monomères dissous (sucres et acides aminés) étaient accumulés dans la glace, surtout en hiver. Au
printemps et été, les polysaccharides dissous dominaient le réservoir de sucres. La MO était présente sous forme de TEP qui par leurs propriétés de gel modifie l’habitat interne de la glace. Ce biofilm retient les nutriments et
gêne le mouvement des microorganismes. La composition et la distribution de la MO dans la glace étaient en partie reliées aux algues de glace. De plus, la thermodynamique de la couverture de glace peut contrôler la
distribution des microorganismes et de la MO, comme observé lors de la fonte de la glace à ISPOL et lors du refroidissement de la banquise à SIMBA. La distribution des bactéries n’est pas corrélée avec celle des algues et de la MO dans la glace. En effet, la consommation de la MO par les bactéries semble être limitée non pas par la
nature chimique des substrats mais par un facteur extérieur affectant le métabolisme bactérien tel que la température, la salinité ou une toxine. Le dysfonctionnement de la boucle microbienne menant à l’accumulation de la MO dans la glace a donc été mis en évidence dans nos échantillons.
De plus, le biofilm formé par les TEP est aussi impliquée dans l’attachement des cellules et autres composés aux parois des canaux de saumure et donc dans la séquence de largage lors de la fonte. Cette séquence semble propice au développement d’efflorescences phytoplanctoniques dans la zone marginale de glace. Les microorganismes originaires de la glace (surtout ceux de taille < 10 μm) semblent capables de croître dans la colonne d’eau et l’apport en nutriments organiques et inorganiques apparaît favorable à la croissance des microorganismes pélagiques.
Enfin, l’influence des activités hétérotrophes sur l’export de carbone et l’efficacité de la pompe biologique à carbone a été évaluée dans la couche de surface (0-100 m) et mésopélagique (100-700 m) de l’océan. Au contraire de la glace, les biomasses et activités bactériennes suivaient les distributions de la chlorophyll a et de la
MO. Elles diminuent fortement en dessous de 100-200 m, néanmoins les valeurs intégrées sur la hauteur de la colonne d’eau indiquent que la reminéralisation de la MO par les bactéries dans la zone mésopélagique est loin d’être négligeable, spécialement dans une région dominée par les diatomées.
|
4 |
Interações entre os ciclones extratropicais e a variabilidade extrema do gelo marinho nos mares de Bellingshausen-Amundsen e no mar de Weddell, Antártica / Interactions between the extratropical cyclones and extreme variability of sea ice in the Amundsen-Bellingshausen Seas and in the Weddell Sea, AntarcticCarpenedo, Camila Bertoletti 14 May 2012 (has links)
O sistema atmosfera-gelo marinho é complexo e fortemente acoplado. Em uma região de transição entre a cobertura de gelo marinho e o mar aberto a interação entre esse sistema é particularmente intensa, sendo significativa o suficiente para influenciar a circulação atmosférica de grande escala e a distribuição de gelo marinho. Assim, o objetivo principal deste trabalho foi analisar as interações entre os ciclones extratropicais e a variabilidade extrema do gelo marinho nos setores dos mares de Bellingshausen-Amundsen (MBA) e do mar de Weddell (MW), no período de verão e inverno austral entre 1989 e 2007. Foram utilizados dados de extensão de gelo marinho do NSIDC/NASA; campos atmosféricos da superfície até os altos níveis da troposfera das reanálises do ERA-Interim (ECMWF); composição de imagens de satélite do canal infravermelho do SSEC; Índice de Niño Oceânico do CPC/NOAA. As anomalias de alta frequência (período de 2-10 dias) e interanual (período maior que 370 dias) foram obtidas aplicando-se a transformada rápida de Fourier nas séries temporais (1989-2007). Os extremos de gelo marinho foram obtidos através do primeiro e terceiro quartil da distribuição dos dados. As características da circulação atmosférica de alta frequência e interanual associadas aos eventos extremos negativos (ENGM) e positivos (EPGM) de gelo marinho, na mesma escala de tempo, foram obtidas através de composições defasadas das anomalias dos campos atmosféricos. Para evidenciar e exemplificar os padrões encontrados nas composições de alta frequência apresenta-se uma análise sinótica de estudo de casos para o setor dos MBA durante o inverno austral, em eventos ENGM e EPGM, separando os casos em fases distintas do fenômeno tropical El Niño. Foi utilizada a estatística de ciclones do Automatic Cyclone Tracking, da Universidade de Melbourne, para analisar a ocorrência de ciclones associados aos períodos de mínima e máxima extensão de gelo marinho na escala interanual. Os resultados mostram que no verão e inverno austral, os eventos ENGM de alta frequência no setor dos MBA e do MW estão associados com as anomalias dos campos atmosféricos, na mesma escala temporal, que se assemelham a um trem de ondas ocorrido a partir de três dias anteriores ao evento extremo. A anomalia ciclônica no oeste e a anomalia anticiclônica no leste do setor resultam em uma anomalia de ventos de norte e, consequentemente, a anomalias positivas de temperatura do ar. Essa configuração anômala contribui para os eventos ENGM através do derretimento do gelo marinho e do seu próprio transporte em direção às latitudes maiores pelos ventos de norte anômalos. As anomalias de alta frequência dos campos atmosféricos em todos os casos (composições defasadas) de eventos EPGM apresentam fases opostas em relação aos eventos ENGM. Portanto, fases distintas do trem de ondas induzem na modulação de extremos de gelo marinho opostos. Em relação às análises sinóticas dos eventos ENGM e EPGM em fases distintas do fenômeno El Niño, verificou-se que em períodos de El Niño há uma intensificação do jato subtropical e um enfraquecimento do jato polar no Pacífico Sul. Há uma menor atuação dos ciclones extratropicais, predominando o sistema de cristas e cavados. Na fase de La Niña há um reforço do jato polar e uma intensa atividade ciclônica sobre os MBA. No evento ENGM (EPGM) há uma associação entre os ventos de norte (de sul) com a vanguarda (retaguarda) dos sistemas ciclônicos em superfície. Na fase Neutra verificou-se uma intensificação do jato polar e uma atuação do sistema de cristas/cavados e de sistemas ciclônicos em superfície. Na análise da influência da circulação atmosférica interanual na variabilidade extrema do gelo marinho, na mesma escala de tempo, observou-se que a fase quente (fria) do ENSO provavelmente está associada com eventos ENGM (EPGM) nos MBA e com eventos EPGM (ENGM) no MW. Sobre a influência da variabilidade interanual da extensão do gelo marinho na atividade ciclônica, nas composições de anomalias interanuais de PNMM em relação aos eventos ENGM nos MBA (lag = 0) no verão, há um predomínio de anomalias positivas de pressão ao nível médio do mar (PNMM) sobre grande parte do Oceano Austral, o que contribuiria para uma menor profundidade e raio dos sistemas em superfície. Já em relação aos eventos ENGM no MW, verifica-se que no lag = 0 há um predomínio de anomalias negativas de PNMM no Oceano Austral, o que contribuiria para um aumento da profundidade e raio dos ciclones. / The sea ice-atmosphere system is complex and tightly coupled. In a transition region between the coverage of sea ice and open ocean the interaction between this system is particularly intense, being significant enough to influence large-scale atmospheric circulation and sea ice distribution. Thus, the main objective of this study was to analyze the interactions between extratropical cyclones and extreme variability of sea ice in the sectors of the Bellingshausen-Amundsen Seas (BAS) and the Weddell Sea (WS), in the period of austral summer and winter between 1989 and 2007. We used sea ice extent data from NSIDC/NASA; atmospheric fields (surface to higher tropospheric levels) from ERA-Interim reanalysis; SSEC IR satellite image composition; and the Oceanic Niño Index CPC/NOAA. Anomalies of high-frequency (2-10 days) and interannual (longer than 370 days) were obtained by applying a fast Fourier transform in the time series (1989-2007). The extremes of sea ice were obtained from the first and third quartile of the data distribution. The characteristics of high-frequency atmospheric circulation and interannual associated with negative (NESI) and positive (PESI) extreme events of sea ice at the same time scale, were obtained from the lagged composites of the anomalies of atmospheric fields. To highlight and illustrate the patterns found in the composites of high frequency presents a synoptic analysis of case studies for the sector of the BAS during the austral winter at NESI and PESI events, separating the cases in different stages of the tropical El Niño phenomenon. Was used a statistical cyclone of Automatic Cyclone Tracking, from University of Melbourne, to analyze the occurrence of cyclones associated with periods of minimum and maximum extent of sea ice in the interannual scale. The results show that in the austral summer and winter, the NESI events of high frequency in the sector of the BAS and the WS are associated with the anomalies of atmospheric fields in the same timescale that resemble a wave train occurring from three days before the extreme event. The cyclonic anomaly in the west and anticyclonic anomaly in the east sector result in an anomaly of north winds and, consequently, the positive anomalies of air temperature. This anomalous configuration contributes for events NESI by sea ice melting and its own transport to higher latitudes by anomalous north winds. Synoptic atmospheric fields anomalies, in all PESI event cases are in opposite phases to NESI events. Therefore, different phases of the circumpolar wave train induce modulation of concurrent sea ice extremes. Regarding the synoptic analysis of events NESI and PESI in different phases of El Niño, it was found that during periods of El Niño it has a strengthening of the subtropical jet and a weakening of the polar jet in the South Pacific. There is less activity of extratropical cyclones, and the predominant system of ridge and troughs. In the La Niña case studies, has a strengthening of the polar jet and an intense cyclonic activity over the BAS. In the NESI (PESI) event there is an association between the north (south) winds at the vanguard (rear) of the cyclone systems at surface. In the Neutral phase case studies, there is an intensification of the polar jet and performance of the system of ridge/troughs and cyclonic systems at surface. In the analysis of the influence of interannual atmospheric circulation on extreme variability of sea ice, at the same time scale, it was observed that the warm (cold) phase of ENSO are probably associated with NESI (PESI) events at BAS and with PESI (NESI) events in the WS. On the influence of interannual variability of sea ice extent in the cyclonic activity, in the composites of interannual anomalies of mean sea level pressure (MSLP) in relation to NESI events in the BAS (lag = 0) in the summer, there is a predominance of positive anomalies of MSLP over much of the Southern Ocean, which would contribute to a lower depth and radius of the surface systems. In relation to NESI events in WS, it appears that in the lag = 0 there is a predominance of negative anomalies of MSLP in the Southern Ocean, which would contribute to an increase in depth and radius cyclones.
|
5 |
Interações entre os ciclones extratropicais e a variabilidade extrema do gelo marinho nos mares de Bellingshausen-Amundsen e no mar de Weddell, Antártica / Interactions between the extratropical cyclones and extreme variability of sea ice in the Amundsen-Bellingshausen Seas and in the Weddell Sea, AntarcticCamila Bertoletti Carpenedo 14 May 2012 (has links)
O sistema atmosfera-gelo marinho é complexo e fortemente acoplado. Em uma região de transição entre a cobertura de gelo marinho e o mar aberto a interação entre esse sistema é particularmente intensa, sendo significativa o suficiente para influenciar a circulação atmosférica de grande escala e a distribuição de gelo marinho. Assim, o objetivo principal deste trabalho foi analisar as interações entre os ciclones extratropicais e a variabilidade extrema do gelo marinho nos setores dos mares de Bellingshausen-Amundsen (MBA) e do mar de Weddell (MW), no período de verão e inverno austral entre 1989 e 2007. Foram utilizados dados de extensão de gelo marinho do NSIDC/NASA; campos atmosféricos da superfície até os altos níveis da troposfera das reanálises do ERA-Interim (ECMWF); composição de imagens de satélite do canal infravermelho do SSEC; Índice de Niño Oceânico do CPC/NOAA. As anomalias de alta frequência (período de 2-10 dias) e interanual (período maior que 370 dias) foram obtidas aplicando-se a transformada rápida de Fourier nas séries temporais (1989-2007). Os extremos de gelo marinho foram obtidos através do primeiro e terceiro quartil da distribuição dos dados. As características da circulação atmosférica de alta frequência e interanual associadas aos eventos extremos negativos (ENGM) e positivos (EPGM) de gelo marinho, na mesma escala de tempo, foram obtidas através de composições defasadas das anomalias dos campos atmosféricos. Para evidenciar e exemplificar os padrões encontrados nas composições de alta frequência apresenta-se uma análise sinótica de estudo de casos para o setor dos MBA durante o inverno austral, em eventos ENGM e EPGM, separando os casos em fases distintas do fenômeno tropical El Niño. Foi utilizada a estatística de ciclones do Automatic Cyclone Tracking, da Universidade de Melbourne, para analisar a ocorrência de ciclones associados aos períodos de mínima e máxima extensão de gelo marinho na escala interanual. Os resultados mostram que no verão e inverno austral, os eventos ENGM de alta frequência no setor dos MBA e do MW estão associados com as anomalias dos campos atmosféricos, na mesma escala temporal, que se assemelham a um trem de ondas ocorrido a partir de três dias anteriores ao evento extremo. A anomalia ciclônica no oeste e a anomalia anticiclônica no leste do setor resultam em uma anomalia de ventos de norte e, consequentemente, a anomalias positivas de temperatura do ar. Essa configuração anômala contribui para os eventos ENGM através do derretimento do gelo marinho e do seu próprio transporte em direção às latitudes maiores pelos ventos de norte anômalos. As anomalias de alta frequência dos campos atmosféricos em todos os casos (composições defasadas) de eventos EPGM apresentam fases opostas em relação aos eventos ENGM. Portanto, fases distintas do trem de ondas induzem na modulação de extremos de gelo marinho opostos. Em relação às análises sinóticas dos eventos ENGM e EPGM em fases distintas do fenômeno El Niño, verificou-se que em períodos de El Niño há uma intensificação do jato subtropical e um enfraquecimento do jato polar no Pacífico Sul. Há uma menor atuação dos ciclones extratropicais, predominando o sistema de cristas e cavados. Na fase de La Niña há um reforço do jato polar e uma intensa atividade ciclônica sobre os MBA. No evento ENGM (EPGM) há uma associação entre os ventos de norte (de sul) com a vanguarda (retaguarda) dos sistemas ciclônicos em superfície. Na fase Neutra verificou-se uma intensificação do jato polar e uma atuação do sistema de cristas/cavados e de sistemas ciclônicos em superfície. Na análise da influência da circulação atmosférica interanual na variabilidade extrema do gelo marinho, na mesma escala de tempo, observou-se que a fase quente (fria) do ENSO provavelmente está associada com eventos ENGM (EPGM) nos MBA e com eventos EPGM (ENGM) no MW. Sobre a influência da variabilidade interanual da extensão do gelo marinho na atividade ciclônica, nas composições de anomalias interanuais de PNMM em relação aos eventos ENGM nos MBA (lag = 0) no verão, há um predomínio de anomalias positivas de pressão ao nível médio do mar (PNMM) sobre grande parte do Oceano Austral, o que contribuiria para uma menor profundidade e raio dos sistemas em superfície. Já em relação aos eventos ENGM no MW, verifica-se que no lag = 0 há um predomínio de anomalias negativas de PNMM no Oceano Austral, o que contribuiria para um aumento da profundidade e raio dos ciclones. / The sea ice-atmosphere system is complex and tightly coupled. In a transition region between the coverage of sea ice and open ocean the interaction between this system is particularly intense, being significant enough to influence large-scale atmospheric circulation and sea ice distribution. Thus, the main objective of this study was to analyze the interactions between extratropical cyclones and extreme variability of sea ice in the sectors of the Bellingshausen-Amundsen Seas (BAS) and the Weddell Sea (WS), in the period of austral summer and winter between 1989 and 2007. We used sea ice extent data from NSIDC/NASA; atmospheric fields (surface to higher tropospheric levels) from ERA-Interim reanalysis; SSEC IR satellite image composition; and the Oceanic Niño Index CPC/NOAA. Anomalies of high-frequency (2-10 days) and interannual (longer than 370 days) were obtained by applying a fast Fourier transform in the time series (1989-2007). The extremes of sea ice were obtained from the first and third quartile of the data distribution. The characteristics of high-frequency atmospheric circulation and interannual associated with negative (NESI) and positive (PESI) extreme events of sea ice at the same time scale, were obtained from the lagged composites of the anomalies of atmospheric fields. To highlight and illustrate the patterns found in the composites of high frequency presents a synoptic analysis of case studies for the sector of the BAS during the austral winter at NESI and PESI events, separating the cases in different stages of the tropical El Niño phenomenon. Was used a statistical cyclone of Automatic Cyclone Tracking, from University of Melbourne, to analyze the occurrence of cyclones associated with periods of minimum and maximum extent of sea ice in the interannual scale. The results show that in the austral summer and winter, the NESI events of high frequency in the sector of the BAS and the WS are associated with the anomalies of atmospheric fields in the same timescale that resemble a wave train occurring from three days before the extreme event. The cyclonic anomaly in the west and anticyclonic anomaly in the east sector result in an anomaly of north winds and, consequently, the positive anomalies of air temperature. This anomalous configuration contributes for events NESI by sea ice melting and its own transport to higher latitudes by anomalous north winds. Synoptic atmospheric fields anomalies, in all PESI event cases are in opposite phases to NESI events. Therefore, different phases of the circumpolar wave train induce modulation of concurrent sea ice extremes. Regarding the synoptic analysis of events NESI and PESI in different phases of El Niño, it was found that during periods of El Niño it has a strengthening of the subtropical jet and a weakening of the polar jet in the South Pacific. There is less activity of extratropical cyclones, and the predominant system of ridge and troughs. In the La Niña case studies, has a strengthening of the polar jet and an intense cyclonic activity over the BAS. In the NESI (PESI) event there is an association between the north (south) winds at the vanguard (rear) of the cyclone systems at surface. In the Neutral phase case studies, there is an intensification of the polar jet and performance of the system of ridge/troughs and cyclonic systems at surface. In the analysis of the influence of interannual atmospheric circulation on extreme variability of sea ice, at the same time scale, it was observed that the warm (cold) phase of ENSO are probably associated with NESI (PESI) events at BAS and with PESI (NESI) events in the WS. On the influence of interannual variability of sea ice extent in the cyclonic activity, in the composites of interannual anomalies of mean sea level pressure (MSLP) in relation to NESI events in the BAS (lag = 0) in the summer, there is a predominance of positive anomalies of MSLP over much of the Southern Ocean, which would contribute to a lower depth and radius of the surface systems. In relation to NESI events in WS, it appears that in the lag = 0 there is a predominance of negative anomalies of MSLP in the Southern Ocean, which would contribute to an increase in depth and radius cyclones.
|
6 |
Interação trópicos-extratrópicos, relações com o oceano Austral e impactos no gelo marinho antártico / TROPICAL-EXTRATROPICAL INTERATION, RELATIONSHIP WITH AUSTRAL OCEAN AND IMPACTS ON ANTARCTIC SEA ICELima, Fabio Ullmann Furtado de 23 August 2012 (has links)
Trabalhos prévios mostram que a variabilidade do gelo marinho antártico em diversas escalas temporais está intimamente relacionada a mecanismos de teleconexões trópicos-extratrópicos. Com base nesta hipótese, este trabalho pretende estabelecer a resposta da passagem dos trens de ondas em latitudes médias, associados a fenômenos de escala intrasazonal (20-100 dias) como a Oscilação de Madden-Julian (Madden-Julian Oscillation ou MJO), nas camadas superiores do Oceano Austral (OA) e impactos no gelo marinho antártico. O período investigado neste estudo é 19892007, com ênfase no inverno e sobre o mar de Ross, localizado no setor Pacífico austral (região diretamente afetada pela passagem dos trens de ondas de latitudes médias). Composições com defasagens (lag composites) de anomalias intrasazonais da tensão de cisalhamento do vento (zonal e meridional) mostram que correntes oceânicas são geradas em resposta a essa forçante atmosférica sobre o oceano no setor Pacífico austral. O transporte zonal e meridional de massa na camada de Ekman oceânica indica que divergência de massa nessa camada precede os eventos extremos intrasazonais de retração do gelo marinho em Ross (EIR). Em contraste, convergência precede períodos de eventos extremos intrasazonais de expansão do gelo marinho em Ross (EIE). A divergência (convergência) de massa na camada de Ekman associada com anomalias intrasazonais do bombeamento de Ekman resulta em ressurgência (subsidência) que precede a ocorrência de EIR (EIE). Alguns trabalhos mostram que águas intermediárias antárticas, que são relativamente mais quentes no inverno em relação às águas superficiais que estão próximas ao ponto de congelamento (ou congeladas), são dirigidas para a superfície do oceano pelo bombeamento de Ekman e ocasionam o derretimento do gelo marinho. Anomalias do transporte meridional de calor na camada de Ekman oceânica mostram que durante os EIR (EIE), calor é transportado para dentro (fora) do mar de Ross entre 15 e 8 dias (12 e 8 dias) precedentes aos EIR (EIE). Anomalias intrasazonais do fluxo de calor na interface ar-mar mostram que precedendo o dia de observação dos EIR (EIE) o fluxo de calor é direcionado da atmosfera para o oceano (do oceano para a atmosfera), sendo essa configuração associada a um ganho (perda) de calor no oceano superior em Ross. Em todas as composições, observa-se a mudança de fase das anomalias nos dias posteriores (lags positivos) ao dia dos EIG e são consistentes com a propagação do modo conhecido como Pacific-South-American (PSA), identificado nesse trabalho por meio de anomalias intrasazonais da altura geopotencial em 200 hPa. Além disso, uma diferença notada em alguns casos nas lag-composities é que em períodos de MJO ativa, as anomalias parecem estar mais deslocadas para o sul do que em períodos de MJO inativa. Em períodos de MJO inativa foram observados 15 (13) eventos de EIR (EIE), enquanto que, em períodos de MJO ativa observou-se 25 (24) eventos de EIR (EIE). Observa-se ainda que há uma maior quantidade de ciclones quando a MJO está presente. Por exemplo, o número de ciclones com duração a partir de 12 horas para períodos sem MJO foi igual a 146 para os EIR e 130 para os EIE. Já o número de ciclones para períodos com MJO foi igual a 311 para os EIR e 278 para os EIE. Com isso, observa-se claramente o papel da MJO na circulação de latitudes média e possíveis associações com o gelo marinho, pois é sabido que a atividade ciclônica está relacionada à advecção de massas de ar sobre o gelo marinho, além da advecção do próprio gelo marinho. Para investigar em detalhes a interação oceano-atmosfera-gelo marinho foram examinados casos persistentes de EIR e EIE. Os casos mais persistentes de EIR (EIE) tiveram durações de 34 e 30 (26 e 25) dias, sendo esses os casos analisados. Mostra-se que as anomalias intrasazonais da circulação atmosférica em baixos níveis (em 850 hPa) estão associadas a advecções quentes (frias) na proporção de aproximadamente 0,5 1 (0,1 1) m.s-1 em períodos precedentes aos EIR (EIE). No geral, anomalias em latitudes médias da circulação atmosférica ciclônicas (anti-ciclônicas) e divergência (convergência) das correntes oceânicas superficiais aparecem relacionadas à ressurgência (subsidência) da ordem de 0,1 0,3 m2.s-1 em algumas pêntadas anteriores a pêntada que corresponde ao início dos supercasos de EIR (EIE). Os padrões mudam de fase com o tempo, o que sugere a propagação de um padrão de onda em escala intrasazonal. Estas anomalias mostram-se abrangendo dimensões espaciais que compreendem grande parte do setor Pacífico austral, incluindo o mar de Ross. Impactos associados a estas anomalias podem ser verificados diretamente no mar de Ross através das análises da concentração do gelo marinho em Ross. Anomalias intrasazonais negativas (positivas) da concentração do gelo marinho predominam sobre o campo do gelo marinho do mar de Ross nas primeiras pêntadas a partir daquela que indica o início dos casos persistentes de EIR (EIE). Durante os períodos de EIR, as anomalias intrasazonais negativas da concentração do gelo mostram-se da ordem de aproximadamente 5% a 10% no interior do mar de Ross e entre 15% a 30% nas bordas do gelo marinho de Ross. Já durante os períodos de EIE, as anomalias intrasazonais positivas da concentração do gelo marinho em Ross mostram-se da ordem de 10% a 30% nas bordas do gelo marinho do mar de Ross. Esse resultado mostra que a resposta do gelo marinho aos padrões atmosféricos e oceânicos em escala intrasazonal possui uma defasagem entre 5 e 1 pêntada(s). No geral, este trabalho cumpriu o objetivo de verificar as respostas do oceano às anomalias da circulação atmosférica e impactos associados no gelo marinho, em escala intrasazonal. / Previous works show that antarctic sea ice variability on several time-scales is close related to tropics-extratropics teleconections mechanisms. Based on this hyphotesis, this work intend to verify the responses in oceanic upper layers of Austral Ocean on intraseasonal time-scale (20-100 days) phenomenom and impacts on sea ice due to anomalous atmospheric circulation associated to the Madden-Julian Oscillation (MJO). The period analysed in this study is from 1989 to 2007, with emphasis on winter season and on Ross Sea (located at austral Pacific sector). Lag composities of zonal and meridional intraseasonal wind stress anomalies show that oceanic currents are generated as a response of these atmospheric forcings on austral Pacific sector. Zonal and meridional mass transport on oceanic Ekman layer, which are perpendicular and to the left of wind stress at Southern Hemisphere (SH), indicate that Ekman mass divergence precedes intraseasonal Ross sea ice extreme retraction (EIR). In contrast, convergence precedes the periods of extreme intraseasonal Ross sea ice expantion (EIE). Divergence (convergence) on oceanic Ekman layer associated to intraseasonal Ekman pumping anomalies results in upwelling (downwelling) wich precedes the occurrence of EIR (EIE). Some works have already shown that intermediate antarctic waters, wich are relatively warmer in the wintertime when compared to superficial waters that are next to the freezing point (or freezed), are headed to ocean surface due to Ekman pumping, generating sea ice melt. Intraseasonal anomalies of sea-air heat flux show that days before EIR (EIE) occurrences, the flux is headed from atmosphere to the ocean (from ocean to the atmosphere), which configuration is associated to the earn (loss) of heat at Ross upper ocean. In all compositions, the change of anomalies phase on the days before EI occurrence (positive lags) is clearly noticed and is consistent to the propagations of the mode known as Pacific South American (PSA), revealed in intraseasonal anomalies of geopotencial height at 200 hPa. Furthermore, in some cases (as in the case of Ekman pumping and Sverdrup transport) the anomalies seem to be deplaced southward in active MJO periods than in inactive MJO periods. In inactive MJO periods were observed 15 (13) EIR (EIE) events, while in active MJO periods were observed 25 (24) EIR (EIE) events. Furthermore, the number of cyclones during EIR periods was bigger than during EIE periods. In addiction, more cyclones were observed when MJO is active. For example, the number of cyclones with duration of 6 (12) hours without MJO was equal to 174 (146) during EIR events and 169 (130) during EIE events. However, the number of cyclones with active MJO was equal to 393 (311) in EIR events and 364 (278) in EIE events. In order to investigate in details the interaction between ocean-atmosphere-sea ice, it was examinated persistents cases of EIR and EIE events. The cases more persistents of EIR (EIE) events had durations of 34 and 30 (26 and 25) days, which were the analised cases. It was observed that intraseasonal anomalies of atmospheric circulation at lower levels (in 850 hPa) and intraseasonal anomalies of superficial ocean currents were associates to hot (cold) advection during periods before EIR (EIR) events. In general, the medium latitude cyclonic (anticyclonic) anomalies of atmospheric circulation and divergence (convergence) of superficial ocean currents seem to be linked to upwelling (downwelling) in some pentads before the pentad which is correspondent to the beggining of EIR (EIE) supercases. The patterns observed change their phases along the time, suggesting the propagation of extratropical intraseasonal wave train pattern. Negatives (positives) intraseasonal anomalies of sea ice concentration were observed above Ross Sea in the first pentads after the beggining of EIR (EIE) persistents cases. This result shows that sea ice response to atmospheric and to oceanic patterns on intraseasonal time-scales has a lag between 5 and 1 pentad(s). In general, this work contributed to better understand the oceanic responses due to anomalies in atmospheric circulation and related impacts on sea ice, on intraseasonal time-scale.
|
7 |
Interação trópicos-extratrópicos, relações com o oceano Austral e impactos no gelo marinho antártico / TROPICAL-EXTRATROPICAL INTERATION, RELATIONSHIP WITH AUSTRAL OCEAN AND IMPACTS ON ANTARCTIC SEA ICEFabio Ullmann Furtado de Lima 23 August 2012 (has links)
Trabalhos prévios mostram que a variabilidade do gelo marinho antártico em diversas escalas temporais está intimamente relacionada a mecanismos de teleconexões trópicos-extratrópicos. Com base nesta hipótese, este trabalho pretende estabelecer a resposta da passagem dos trens de ondas em latitudes médias, associados a fenômenos de escala intrasazonal (20-100 dias) como a Oscilação de Madden-Julian (Madden-Julian Oscillation ou MJO), nas camadas superiores do Oceano Austral (OA) e impactos no gelo marinho antártico. O período investigado neste estudo é 19892007, com ênfase no inverno e sobre o mar de Ross, localizado no setor Pacífico austral (região diretamente afetada pela passagem dos trens de ondas de latitudes médias). Composições com defasagens (lag composites) de anomalias intrasazonais da tensão de cisalhamento do vento (zonal e meridional) mostram que correntes oceânicas são geradas em resposta a essa forçante atmosférica sobre o oceano no setor Pacífico austral. O transporte zonal e meridional de massa na camada de Ekman oceânica indica que divergência de massa nessa camada precede os eventos extremos intrasazonais de retração do gelo marinho em Ross (EIR). Em contraste, convergência precede períodos de eventos extremos intrasazonais de expansão do gelo marinho em Ross (EIE). A divergência (convergência) de massa na camada de Ekman associada com anomalias intrasazonais do bombeamento de Ekman resulta em ressurgência (subsidência) que precede a ocorrência de EIR (EIE). Alguns trabalhos mostram que águas intermediárias antárticas, que são relativamente mais quentes no inverno em relação às águas superficiais que estão próximas ao ponto de congelamento (ou congeladas), são dirigidas para a superfície do oceano pelo bombeamento de Ekman e ocasionam o derretimento do gelo marinho. Anomalias do transporte meridional de calor na camada de Ekman oceânica mostram que durante os EIR (EIE), calor é transportado para dentro (fora) do mar de Ross entre 15 e 8 dias (12 e 8 dias) precedentes aos EIR (EIE). Anomalias intrasazonais do fluxo de calor na interface ar-mar mostram que precedendo o dia de observação dos EIR (EIE) o fluxo de calor é direcionado da atmosfera para o oceano (do oceano para a atmosfera), sendo essa configuração associada a um ganho (perda) de calor no oceano superior em Ross. Em todas as composições, observa-se a mudança de fase das anomalias nos dias posteriores (lags positivos) ao dia dos EIG e são consistentes com a propagação do modo conhecido como Pacific-South-American (PSA), identificado nesse trabalho por meio de anomalias intrasazonais da altura geopotencial em 200 hPa. Além disso, uma diferença notada em alguns casos nas lag-composities é que em períodos de MJO ativa, as anomalias parecem estar mais deslocadas para o sul do que em períodos de MJO inativa. Em períodos de MJO inativa foram observados 15 (13) eventos de EIR (EIE), enquanto que, em períodos de MJO ativa observou-se 25 (24) eventos de EIR (EIE). Observa-se ainda que há uma maior quantidade de ciclones quando a MJO está presente. Por exemplo, o número de ciclones com duração a partir de 12 horas para períodos sem MJO foi igual a 146 para os EIR e 130 para os EIE. Já o número de ciclones para períodos com MJO foi igual a 311 para os EIR e 278 para os EIE. Com isso, observa-se claramente o papel da MJO na circulação de latitudes média e possíveis associações com o gelo marinho, pois é sabido que a atividade ciclônica está relacionada à advecção de massas de ar sobre o gelo marinho, além da advecção do próprio gelo marinho. Para investigar em detalhes a interação oceano-atmosfera-gelo marinho foram examinados casos persistentes de EIR e EIE. Os casos mais persistentes de EIR (EIE) tiveram durações de 34 e 30 (26 e 25) dias, sendo esses os casos analisados. Mostra-se que as anomalias intrasazonais da circulação atmosférica em baixos níveis (em 850 hPa) estão associadas a advecções quentes (frias) na proporção de aproximadamente 0,5 1 (0,1 1) m.s-1 em períodos precedentes aos EIR (EIE). No geral, anomalias em latitudes médias da circulação atmosférica ciclônicas (anti-ciclônicas) e divergência (convergência) das correntes oceânicas superficiais aparecem relacionadas à ressurgência (subsidência) da ordem de 0,1 0,3 m2.s-1 em algumas pêntadas anteriores a pêntada que corresponde ao início dos supercasos de EIR (EIE). Os padrões mudam de fase com o tempo, o que sugere a propagação de um padrão de onda em escala intrasazonal. Estas anomalias mostram-se abrangendo dimensões espaciais que compreendem grande parte do setor Pacífico austral, incluindo o mar de Ross. Impactos associados a estas anomalias podem ser verificados diretamente no mar de Ross através das análises da concentração do gelo marinho em Ross. Anomalias intrasazonais negativas (positivas) da concentração do gelo marinho predominam sobre o campo do gelo marinho do mar de Ross nas primeiras pêntadas a partir daquela que indica o início dos casos persistentes de EIR (EIE). Durante os períodos de EIR, as anomalias intrasazonais negativas da concentração do gelo mostram-se da ordem de aproximadamente 5% a 10% no interior do mar de Ross e entre 15% a 30% nas bordas do gelo marinho de Ross. Já durante os períodos de EIE, as anomalias intrasazonais positivas da concentração do gelo marinho em Ross mostram-se da ordem de 10% a 30% nas bordas do gelo marinho do mar de Ross. Esse resultado mostra que a resposta do gelo marinho aos padrões atmosféricos e oceânicos em escala intrasazonal possui uma defasagem entre 5 e 1 pêntada(s). No geral, este trabalho cumpriu o objetivo de verificar as respostas do oceano às anomalias da circulação atmosférica e impactos associados no gelo marinho, em escala intrasazonal. / Previous works show that antarctic sea ice variability on several time-scales is close related to tropics-extratropics teleconections mechanisms. Based on this hyphotesis, this work intend to verify the responses in oceanic upper layers of Austral Ocean on intraseasonal time-scale (20-100 days) phenomenom and impacts on sea ice due to anomalous atmospheric circulation associated to the Madden-Julian Oscillation (MJO). The period analysed in this study is from 1989 to 2007, with emphasis on winter season and on Ross Sea (located at austral Pacific sector). Lag composities of zonal and meridional intraseasonal wind stress anomalies show that oceanic currents are generated as a response of these atmospheric forcings on austral Pacific sector. Zonal and meridional mass transport on oceanic Ekman layer, which are perpendicular and to the left of wind stress at Southern Hemisphere (SH), indicate that Ekman mass divergence precedes intraseasonal Ross sea ice extreme retraction (EIR). In contrast, convergence precedes the periods of extreme intraseasonal Ross sea ice expantion (EIE). Divergence (convergence) on oceanic Ekman layer associated to intraseasonal Ekman pumping anomalies results in upwelling (downwelling) wich precedes the occurrence of EIR (EIE). Some works have already shown that intermediate antarctic waters, wich are relatively warmer in the wintertime when compared to superficial waters that are next to the freezing point (or freezed), are headed to ocean surface due to Ekman pumping, generating sea ice melt. Intraseasonal anomalies of sea-air heat flux show that days before EIR (EIE) occurrences, the flux is headed from atmosphere to the ocean (from ocean to the atmosphere), which configuration is associated to the earn (loss) of heat at Ross upper ocean. In all compositions, the change of anomalies phase on the days before EI occurrence (positive lags) is clearly noticed and is consistent to the propagations of the mode known as Pacific South American (PSA), revealed in intraseasonal anomalies of geopotencial height at 200 hPa. Furthermore, in some cases (as in the case of Ekman pumping and Sverdrup transport) the anomalies seem to be deplaced southward in active MJO periods than in inactive MJO periods. In inactive MJO periods were observed 15 (13) EIR (EIE) events, while in active MJO periods were observed 25 (24) EIR (EIE) events. Furthermore, the number of cyclones during EIR periods was bigger than during EIE periods. In addiction, more cyclones were observed when MJO is active. For example, the number of cyclones with duration of 6 (12) hours without MJO was equal to 174 (146) during EIR events and 169 (130) during EIE events. However, the number of cyclones with active MJO was equal to 393 (311) in EIR events and 364 (278) in EIE events. In order to investigate in details the interaction between ocean-atmosphere-sea ice, it was examinated persistents cases of EIR and EIE events. The cases more persistents of EIR (EIE) events had durations of 34 and 30 (26 and 25) days, which were the analised cases. It was observed that intraseasonal anomalies of atmospheric circulation at lower levels (in 850 hPa) and intraseasonal anomalies of superficial ocean currents were associates to hot (cold) advection during periods before EIR (EIR) events. In general, the medium latitude cyclonic (anticyclonic) anomalies of atmospheric circulation and divergence (convergence) of superficial ocean currents seem to be linked to upwelling (downwelling) in some pentads before the pentad which is correspondent to the beggining of EIR (EIE) supercases. The patterns observed change their phases along the time, suggesting the propagation of extratropical intraseasonal wave train pattern. Negatives (positives) intraseasonal anomalies of sea ice concentration were observed above Ross Sea in the first pentads after the beggining of EIR (EIE) persistents cases. This result shows that sea ice response to atmospheric and to oceanic patterns on intraseasonal time-scales has a lag between 5 and 1 pentad(s). In general, this work contributed to better understand the oceanic responses due to anomalies in atmospheric circulation and related impacts on sea ice, on intraseasonal time-scale.
|
8 |
Interactions between the microbial network and the organic matter in the Southern Ocean: impacts on the biological carbon pump / Interactions entre le réseau microbien et la matière organique dans l'Océan Antarctique: impacts sur la pompe biologique à carboneDumont, Isabelle 03 July 2009 (has links)
<p align="justify">The Southern Ocean (ca. 20% of the world ocean surface) is a key place for the regulation of Earth climate thanks to its capacity to absorb atmospheric carbon dioxide (CO2) by physico-chemical and biological mechanisms. The biological carbon pump is a major pathway of absorption of CO2 through which the CO2 incorporated into autotrophic microorganisms in surface waters is transferred to deep waters. This process is influenced by the extent of the primary production and by the intensity of the remineralization of organic matter along the water column. So, the annual cycle of sea ice, through its in situ production and remineralization processes but also, through the release of microorganisms, organic and inorganic nutrients (in particular iron)into the ocean has an impact on the carbon cycle of the Southern Ocean, notably by promoting the initiation of phytoplanktonic blooms at time of ice melting.</p><p><p align="justify">The present work focussed on the distribution of organic matter (OM) and its interactions with the microbial network (algae, bacteria and protozoa) in sea ice and ocean, with a special attention to the factors which regulate the biological carbon pump of the Southern Ocean. This thesis gathers data collected from a) late winter to summer in the Western Pacific sector, Western Weddell Sea and Bellingshausen Sea during three sea ice cruises ARISE, ISPOL-drifting station and SIMBA-drifting station and b) summer in the Sub-Antarctic and Polar Front Zone during the oceanographic cruise SAZ-Sense.</p><p><p align="justify">The sea ice covers were typical of first-year pack ice with thickness ranging between 0.3 and 1.2 m, and composed of granular and columnar ice. Sea ice temperature ranging between -8.9°C and -0.4°C, brines volume ranging between 2.9 to 28.2% and brines salinity from 10 to >100 were observed. These extreme physicochemical factors experienced by the microorganisms trapped into the semi-solid sea ice matrix therefore constitute an extreme change as compared to the open ocean. Sea ice algae were mainly composed of diatoms but autotrophic flagellates (such as dinoflagellates or Phaeocystis sp.) were also typically found in surface ice layers. Maximal algal biomass was usually observed in the bottom ice layers except during SIMBA where the maxima was localised in the top ice layers likely because of the snow and ice thickness which limit the light available in the ice cover. During early spring, the algal growth was controlled by the space availability (i.e. brine volume) while in spring/summer (ISPOL, SIMBA) the major nutrients availability inside sea ice may have controlled algal growth. At all seasons, high concentrations of dissolved and particulate organic matter were measured in sea ice as compared to the water column. Dissolved monomers (saccharides and amino acids) were accumulated in sea ice, in particular in winter. During spring and summer, polysaccharides constitute the main fraction of the dissolved saccharides pool. High concentrations of transparent exopolymeric particles (TEP), mainly constituted with saccharides, were present and their gel properties greatly influence the internal habitat of sea ice, by retaining the nutrients and by preventing the protozoa grazing pressure, inducing therefore an algal accumulation. The composition as well as the vertical distribution of OM in sea ice was linked to sea ice algae.</p><p><p align="justify">Besides, the distribution of microorganisms and organic compounds in the sea ice was also greatly influenced by the thermodynamics of the sea ice cover, as evidenced during a melting period for ISPOL and during a floodfreeze cycle for SIMBA. The bacteria distribution in the sea ice was not correlated with those of algae and organic matter. Indeed, the utilization of the accumulated organic matter by bacteria seemed to be limited by an external factor such as temperature, salinity or toxins rather than by the nature of the organic substrates, which are partly composed of labile monomeric saccharides. Thus the disconnection of the microbial loop leading to the OM accumulation was highlighted in sea ice.</p><p><p align="justify">In addition the biofilm formed by TEP was also involved in the retention of cells and other compounds(DOM, POM, and inorganic nutrients such as phosphate and iron) to the brine channels walls and thus in the timing of release of ice constituents when ice melts. The sequence of release in marginal ice zone, as studied in a microcosm experiments realized in controlled and trace-metal clean conditions, was likely favourable to the development of blooms in the marginal ice zone. Moreover microorganisms derived from sea ice (mainly <10 µm) seems able to thrive and grow in the water column as also the supply of organic nutrients and Fe seems to benefit to the pelagic microbial community.</p><p><p align="justify">Finally, the influence of the remineralization of organic matter by heterotrophic bacterioplankton on carbon export and biological carbon pump efficiency was investigated in the epipelagic (0-100 m) and mesopelagic(100-700 m) zones during the summer in the sub-Antarctic and Polar Front zones (SAZ and PFZ) of the Australian sector (Southern Ocean). Opposite to sea ice, bacterial biomass and activities followed Chl a and organic matter distributions. Bacterial abundance, biomass and activities drastically decreased below depths of 100-200 m. Nevertheless, depth-integrated rates through the thickness of the different water masses showed that the mesopelagic contribution of bacteria represents a non-negligible fraction, in particular in a diatom-dominated system./</p><p><br><p><p align="justify">L’océan Antarctique (± 20% de la surface totale des océans) est un endroit essentiel pour la régulation du climat de notre planète grâce à sa capacité d’absorber le dioxyde de carbone (CO2) atmosphérique par des mécanismes physico-chimique et biologique. La pompe biologique à carbone est un processus majeur de fixation de CO2 par les organismes autotrophes à la surface de l’océan et de transfert de carbone organique vers le fond de l’océan. Ce processus est influencé par l’importance de la production primaire ainsi que par l’intensité de la reminéralisation de la matière organique dans la colonne d’eau. Ainsi, le cycle annuel de la glace via sa production/reminéralisation in situ mais aussi via l’ensemencement de l’océan avec des microorganismes et des nutriments organiques et inorganiques (en particulier le fer) a un impact sur le cycle du carbone dans l’Océan Antarctique, notamment en favorisant l’initiation d’efflorescences phytoplanctoniques dans la zone marginale de glace.</p><p><p align="justify">Plus précisément, nous avons étudié les interactions entre le réseau microbien (algues, bactéries et protozoaires) et la matière organique dans le but d’évaluer leurs impacts potentiels sur la pompe biologique de carbone dans l’Océan Austral. Deux écosystèmes différents ont été étudiés :la glace de mer et le milieu océanique grâce à des échantillons prélevés lors des campagnes de glace ARISE, ISPOL et SIMBA et lors de la campagne océanographique SAZ-Sense, couvrant une période allant de la fin de l’hiver à l’été.</p><p><p align="justify">La glace de mer est un environnement très particulier dans lequel les microorganismes planctoniques se trouvent piégés lors de la formation de la banquise et dans lesquels ils subissent des conditions extrêmes de température et de salinité, notamment. Les banquises en océan ouvert étudiées (0,3 à 1,2 m d’épaisseur, températures de -8.9°C à -0.4°C, volumes relatifs de saumure de 2.9 à 28.2% et salinités de saumures entre 10 et jusque >100) étaient composées de glace columnaire et granulaire. Les algues de glace étaient principalement des diatomées mais des flagellés autotrophes (tels que des dinoflagellés ou Phaeocystis sp.) ont été typiquement observés dans les couches de glace de surface. Les biomasses algales maximales se trouvaient généralement dans la couche de glace de fond sauf à SIMBA où les maxima se trouvaient en surface, probablement en raison de l’épaisseur des couches de neige et de glace, limitant la lumière disponible dans la colonne de glace. Au début du printemps, la croissance algale était contrôlée par l’espace disponible (càd le volume des saumures) tandis qu’au printemps/été, la disponibilité en nutriments majeurs a pu la contrôler. A toutes les saisons, des concentrations élevées en matière organique (MO) dissoute et particulaire on été mesurées dans la glace de mer par rapport à l’océan. Des monomères dissous (sucres et acides aminés) étaient accumulés dans la glace, surtout en hiver. Au printemps et été, les polysaccharides dissous dominaient le réservoir de sucres. La MO était présente sous forme de TEP qui par leurs propriétés de gel modifie l’habitat interne de la glace. Ce biofilm retient les nutriments et gêne le mouvement des microorganismes. La composition et la distribution de la MO dans la glace étaient en partie reliées aux algues de glace. De plus, la thermodynamique de la couverture de glace peut contrôler la distribution des microorganismes et de la MO, comme observé lors de la fonte de la glace à ISPOL et lors du refroidissement de la banquise à SIMBA. La distribution des bactéries n’est pas corrélée avec celle des algues et de la MO dans la glace. En effet, la consommation de la MO par les bactéries semble être limitée non pas par la nature chimique des substrats mais par un facteur extérieur affectant le métabolisme bactérien tel que la température, la salinité ou une toxine. Le dysfonctionnement de la boucle microbienne menant à l’accumulation de la MO dans la glace a donc été mis en évidence dans nos échantillons.</p><p><p align="justify">De plus, le biofilm formé par les TEP est aussi impliquée dans l’attachement des cellules et autres composés aux parois des canaux de saumure et donc dans la séquence de largage lors de la fonte. Cette séquence semble propice au développement d’efflorescences phytoplanctoniques dans la zone marginale de glace. Les microorganismes originaires de la glace (surtout ceux de taille < 10 μm) semblent capables de croître dans la colonne d’eau et l’apport en nutriments organiques et inorganiques apparaît favorable à la croissance des microorganismes pélagiques.</p><p><p align="justify">Enfin, l’influence des activités hétérotrophes sur l’export de carbone et l’efficacité de la pompe biologique à carbone a été évaluée dans la couche de surface (0-100 m) et mésopélagique (100-700 m) de l’océan. Au contraire de la glace, les biomasses et activités bactériennes suivaient les distributions de la chlorophyll a et de la MO. Elles diminuent fortement en dessous de 100-200 m, néanmoins les valeurs intégrées sur la hauteur de la colonne d’eau indiquent que la reminéralisation de la MO par les bactéries dans la zone mésopélagique est loin d’être négligeable, spécialement dans une région dominée par les diatomées.</p> / Doctorat en Sciences agronomiques et ingénierie biologique / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0861 seconds