• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 38
  • 38
  • 16
  • 13
  • 13
  • 12
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Autonomous smart antenna systems for future mobile devices

Zhou, Wei January 2015 (has links)
Along with the current trend of wireless technology innovation, wideband, compact size, low-profile, lightweight and multiple functional antenna and array designs are becoming more attractive in many applications. Conventional wireless systems utilise omni-directional or sectored antenna systems. The disadvantage of such antenna systems is that the electromagnetic energy, required by a particular user located in a certain direction, is radiated unnecessarily in every direction within the entire cell, hence causing interference to other users in the system. In order to limit this source of interference and direct the energy to the desired user, smart antenna systems have been investigated and developed. This thesis presents the design, simulation, fabrication and full implementation of a novel smart antenna system for future mobile applications. The design and characterisation of a novel antenna structure and four-element liner array geometry for smart antenna systems are proposed in the first stage of this study. Firstly, a miniaturised microstrip-fed planar monopole antenna with Archimedean spiral slots to cover WiFi/Bluetooth and LTE mobile applications has been demonstrated. The fundamental structure of the proposed antenna element is a circular patch, which operates in high frequency range, for the purpose of miniaturising the circuit dimension. In order to achieve a multi-band performance, Archimedean spiral slots, acting as resonance paths, have been etched on the circular patch antenna. Different shapes of Archimedean spiral slots have been investigated and compared. The miniaturised and optimised antenna achieves a bandwidth of 2.2GHz to 2.9GHz covering WiFi/Bluetooth (2.45GHz) and LTE (2.6GHz) mobile standards. Then a four-element linear antenna array geometry utilising the planar monopole elements with Archimedean spiral slots has been described. All the relevant parameters have been studied and evaluated. Different phase shifts are excited for the array elements, and the main beam scanning range has been simulated and analysed. The second stage of the study presents several feeding network structures, which control the amplitude and phase excitations of the smart antenna elements. Research begins with the basic Wilkinson power divider configuration. Then this thesis presents a compact feeding network for circular antenna array, reconfigurable feeding networks for tuning the operating frequency and polarisations, a feeding network on high resistivity silicon (HRS), and an ultrawide-band (UWB) feeding network covering from 0.5GHz to 10GHz. The UWB feeding network is used to establish the smart antenna array system. Different topologies of phase shifters are discussed in the third stage, including ferrite phase shifters and planar phase shifters using switched delay line and loaded transmission line technologies. Diodes, FETs, MMIC and MEMS are integrated into different configurations. Based on the comparison, a low loss and high accurate Hittite MMIC analogue phase shifter has been selected and fully evaluated for this implementation. For the purpose of impedance matching and field matching, compact and ultra wideband CPW-to-Microstrip transitions are utilised between the phase shifters, feeding network and antenna elements. Finally, the fully integrated smart antenna array achieves a 10dB reflection coefficient from 2.25GHz to 2.8GHz, which covers WiFi/Bluetooth (2.45GHz) and LTE (2.6GHz) mobile applications. By appropriately controlling the voltage on the phase shifters, the main beam of the antenna array is steered ±50° and ±52°, for 2.45GHz and 2.6GHz, respectively. Furthermore, the smart antenna array demonstrates a gain of 8.5dBi with 40° 3dB bandwidth in broadside direction, and has more than 10dB side lobe level suppression across the scan. The final stage of the study investigates hardware and software automatic control systems for the smart antenna array. Two microcontrollers PIC18F4550 and LPC1768 are utilised to build the control PCBs. Using the graphical user interfaces provided in this thesis, it is able to configure the beam steering of the smart antenna array, which allows the user to analyse and optimise the signal strength of the received WiFi signals around the mobile device. The design strategies proposed in this thesis contribute to the realisation of adaptable and autonomous smart phone systems.
2

A mathematical framework for expressing multivariate distributions useful in wireless communications

Hemachandra, Kasun Thilina 11 1900 (has links)
Multivariate statistics play an important role in performance analysis of wireless communication systems in correlated fading channels. This thesis presents a framework which can be used to derive easily computable mathematical representations for some multivariate statistical distributions, which are derivatives of the Gaussian distribution, and which have a particular correlation structure. The new multivariate distribution representations are given as single integral solutions of familiar mathematical functions which can be evaluated using common mathematical software packages. The new approach can be used to obtain single integral representations for the multivariate probability density function, cumulative distribution function, and joint moments of some widely used statistical distributions in wireless communication theory, under an assumed correlation structure. The remarkable advantage of the new representation is that the computational burden remains at numerical evaluation of a single integral, for a distribution with an arbitrary number of dimensions. The new representations are used to evaluate the performance of diversity combining schemes and multiple input multiple output systems, operating in correlated fading channels. The new framework gives some insights into some long existing open problems in multivariate statistical distributions. / Communications
3

A mathematical framework for expressing multivariate distributions useful in wireless communications

Hemachandra, Kasun Thilina Unknown Date
No description available.
4

Iterative receivers for interference limited environments

Krzymien, Lukasz 06 1900 (has links)
Interference dominated wireless communications systems are considered. Joint detection methods are applied to combat the negative effects of the temporal and spatial interference. However, practical joint detectors are not commonly used due to their high complexity. Therefore, there is a constant need to deliver reduced complexity solutions that approach substantial fraction of the channel capacity. In the first part of this thesis it is shown that simple transmission technique employing repetition coding and interleaving combined with interference cancellation is an asymptotically optimal processing strategy when high interference is experienced, for instance due to the relatively high ratio of the number of signals to the number of orthogonal dimensions. Surprisingly, strong, capacity achieving codes exhibit inferior performance and are not well suited for iterative interference cancellation due to their sharp threshold characteristics. Motivated by this observation partitioned modulation is introduced and applied to a multiuser spread spectrum system, which inherently encompasses a repetition coding mechanism. The detection of the resulting signals employs a parallel interference cancellation approach, where the repetition code exchanges information iteratively with the canceller. Precise signal-to-noise ratio evolution of the proposed receiver as a function of demodulation iterations is given. It is shown, that for equal received power system, partitioned demodulator outperforms linear minimum mean squared error processor at a fraction of complexity. This receiver processing for a wide range of parameters delivers estimates that coincide with the optimal processing based on exhaustive search. For unequal received signal powers these advantages are even more visible and for a particular exponential power allocation the proposed system reaches the capacity of the channel. The analytical investigations are verified using computer simulations. In the second part of this dissertation, multi-user MIMO systems compliant with 3GPP LTE standard are considered. Turbo near-far resistant interference cancellation receiver is proposed. It jointly removes multi-user, multi-antenna and inter-symbol interference and outperforms traditional demodulation/decoding method adopted in the LTE standard. Semi-analytical method of predicting the performance of this joint receiver for any system setup is outlined. This approach makes it possible to tune up the performance of the system without running extensive bit-error-rate simulations. / Communications
5

Interference Alignment with Distributed Antenna Systems

Starr, Jonathan Kenneth 17 February 2012 (has links)
This paper considers the combination of interference alignment and distributed antenna systems to improve the rate performance of cell-edge users in the cellular downlink. Because the power resources of each antenna in distributed antenna systems are geographically separated, practical implementations of distributed antenna systems require consideration of per-antenna power constraints on the transmit antennas. For this reason, we consider interference alignment with two types of power constraints: per-antenna power inequality constraints and per-antenna power equality constraints. On one hand, we show that interference alignment with per-antenna power inequality constraints is arbitrarily feasible using a technique of antenna power back-off but suffers from a loss of performance that we quantify in the case of Rayleigh-fading. On the other hand, we show that interference alignment with per-antenna power equality constraints does not suffer from a systematic loss of performance but yet requires more antennas to be feasible. We develop algorithms for implementing interference alignment with both types of constraints and numerically validate the results of our analysis. Finally, we demonstrate using the 3rd Generation Partnership Project spatial channel model in a cellular setting that interference alignment with distributed antenna systems has better rate performance than interference alignment with centralized antenna systems throughout the entire cell, especially near the cell boundary. / text
6

Iterative receivers for interference limited environments

Krzymien, Lukasz Unknown Date
No description available.
7

Design of indoor communication infrastructure for ultra-high capacity next generation wireless services

Gordon, George S. D. January 2013 (has links)
The proliferation of data hungry wireless devices, such as smart phones and intelligent sensing networks, is pushing modern wireless networks to their limits. A significant shortfall in the ability of networks to meet demand for data is imminent. This thesis addresses this problem through examining the design of distributed antenna systems (DAS) to support next generation high speed wireless services that require high densities of access points and must support multiple-input multiple-output (MIMO) protocols. First, it is shown that fibre links in DAS can be replaced with low-cost, broadband free-space optical links, termed radio over free-space optics (RoFSO) links. RoFSO links enable the implementation of very high density DAS without the need for prohibitively expensive cabling infrastructure. A 16m RoFSO link requiring only manual alignment is experimentally demonstrated to provide a spurious-free dynamic range (SFDR) of > 100dB/Hz^2/3 over a frequency range from 300MHz- 3.1GHz. The link is measured to have an 802.11g EVM dynamic range of 36dB. This is the first such demonstration of a low-cost broadband RoFSO system. Following this, the linearity performance of RoFSO links is examined. Because of the high loss nature of RoFSO links, the directly-modulated semiconductor lasers they use are susceptible to high-order nonlinear behaviour, which abruptly limits performance at high powers. Existing measures of dynamic range, such as SFDR, assume only third-order nonlinearity and so become inaccurate in the presence of dominant high-order effects. An alternative measure of dynamic range called dynamic-distortion-free dynamic range (DDFDR) is then proposed. For two different wireless services it is observed experimentally that on average the DDFDR upper limit predicts the EVM knee point to within 1dB, while the third-order SFDR predicts it to within 6dB. This is the first detailed analysis of high-order distortion effects in lossy analogue optical links and DDFDR is the first metric able to usefully quantify such behaviour. Next, the combination of emerging MIMO wireless protocols with existing DAS is examined. It is demonstrated for the first time that for small numbers of MIMO streams (up to ~4), the capacity benefits of MIMO can be attained in existing DAS installations simply by sending the different MIMO spatial streams to spatially separated remote antenna units (RAU). This is in contrast to the prevailing paradigm of replicating each MIMO spatial stream at each RAU. Experimental results for two representative DAS layouts show that replicating spatial streams provides an increase of only ~1% in the median channel capacity over merely distributing them. This compares to a 3-4% increase of both strategies over traditional non-DAS MIMO. This result is shown to hold in the multiple user case with 20 users accessing 3 base stations. It is concluded that existing DAS installations offer negligible capacity penalty for MIMO services for small numbers of spatial streams, including in multi-user MIMO scenarios. Finally, the design of DAS to support emerging wireless protocols, such as 802.11ac, that have large numbers of MIMO streams (4-8) is considered. In such cases, capacity is best enhanced by sending multiple MIMO streams to single remote locations. This is achieved using a novel holographic mode division multiplexing (MDM) system, which sends each separate MIMO stream via a different propagation mode in a multimode fibre. Combined channel measurements over 2km of mode-multiplexed MMF and a typical indoor radio environment show in principle a 2x2 MIMO link providing capacities of 10bit/s/Hz over a bandwidth of 6GHz. Using a second experimental set-up it is shown that the system could feasibly support at least up to a 4x4 MIMO system over 2km of MMF with a condition number >15dB over a bandwidth of 3GHz, indicating a high degree of separability of the channels. Finally, it is shown experimentally that when a fibre contains sharp bends (radius between 20mm and 7.2mm) the first 6 mode-groups used for multiplexing exhibit no additional power loss or cross-coupling compared with unbent fibre, although mode-groups 7, 8 and 9 are more severely affected. This indicates that at least 6x6 multiplexing is possible in standard installations with tight fibre bends.
8

Alinhamento de interferÃncia espacial em cenÃrios realistas / Spatial Interference Alignment under Realistic Scenarios

Paulo Garcia Normando 02 August 2013 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Devido ao rÃpido crescimento e os agressivos requisitos de vazÃo nas atuais redes sem fio, como os sistemas celulares de 4 a GeraÃÃo, a interferÃncia se tornou um problema que nÃo pode mais ser negligenciado. Neste contexto, o Alinhamento de InterferÃncia (IA) tem surgido como uma tÃcnica promissora que possibilita transmissÃes livres de interferÃncia com elevada eficiÃncia espectral. No entanto, trabalhos recentes tÃm focado principalmente nos ganhos teÃricos que esta tÃcnica pode prover, enquanto esta dissertaÃÃo visa dar um passo na direÃÃo de esclarecer alguns dos problemas prÃticos de implementaÃÃo da tÃcnica em redes celulares, bem como comparÃ-la com outras tÃcnicas bem estabelecidas. Uma rede composta por trÃs cÃlulas foi escolhida como cenÃrio inicial de avaliaÃÃo, para o qual diversos fatores realistas foram considerados de modo a realizar diferentes anÃlises. A primeira anÃlise foi baseada em imperfeiÃÃes de canal, cujos resultados mostraram que o IA à mais robusto aos erros de estimaÃÃo de canal que o BD (do inglÃs, Block Diagonalization), enquanto as duas abordagens sÃo igualmente afetadas pela correlaÃÃo entre as antenas. O impacto de uma interferÃncia externa nÃo-coordenada, que foi modelada por diferentes matrizes de covariÃncia de modo a emular vÃrios cenÃrios, tambÃm foi avaliado. Os resultados mostraram que as modificaÃÃes feitas nos algoritmos de IA podem melhorar bastante seus desempenho, com uma vantagem para o algoritmo que suprime um Ãnico fluxo de dados, quando sÃo comparadas as taxas de erro de bit alcanÃadas por cada um. Para combinar os fatores das anÃlises anteriores, as variaÃÃes temporais de canal foram consideradas. Neste conjunto de simulaÃÃes, alÃm da presenÃa da interferÃncia externa, os prÃ-codificadores sÃo calculados atravÃs de medidas atrasadas de canal, levando a resultados que corroboraram com as anÃlises anteriores. Um fato recorrente percebido em todas as anÃlises anteriores à o dilema entre aplicar os algoritmos baseados em BD, para que se consiga alcanÃar maiores capacidades, ou enviar a informaÃÃo atravÃs de um enlace mais confiÃvel utilizando o IA. Uma maneira de esclarecer este dilema à efetivamente realizar simulaÃÃes a nÃvel sistÃmico, para isto foi aplicado um simulador sistÃmico composto por um grande nÃmero de setores. Como resultado, todas as anÃlises realizadas neste simulador mostraram que a tÃcnica de IA atinge desempenhos intermediÃrios entre a nÃo cooperaÃÃo e os algoritmos baseados na prÃ-codificaÃÃo conjunta. Uma das principais contribuiÃÃes deste trabalho foi mostrar alguns cenÃrios em que a tÃcnica do IA pode ser aplicada. Por exemplo, quando as estimaÃÃes dos canais nÃo sÃo tÃo confiÃveis à melhor aplicar o IA do que os esquemas baseados no processamento conjunto. TambÃm mostrou-se que as modificaÃÃes nos algoritmos de IA, que levam em consideraÃÃo a interferÃncia externa, podem melhorar consideravelmente o desempenho dos algoritmos. Finalmente, o IA se mostrou uma tÃcnica adequada para ser aplicada em cenÃrios em que a interferÃncia à alta e nÃo à possÃvel ter um alto grau de cooperaÃÃo entre os setores vizinhos. / Due to the rapid growth and the aggressive throughput requirements of current wireless networks, such as the 4th Generation (4G) cellular systems, the interference has become an issue that cannot be neglected anymore. In this context, the Interference Alignment (IA) arises as a promising technique that enables transmissions free of interference with high-spectral efficiency. However, while recent works have focused mainly on the theoretical gains that the technique could provide, this dissertation aims to go a step further and clarify some of the practical issues on the implementation of this technique in a cellular network, as well as compare it to other well-established techniques. As an initial evaluation scenario, a 3-cell network was considered, for which several realistic factors were taken into account in order to perform different analyses. The first analysis was based on channel imperfections, for which the results showed that IA is more robust than Block Diagonalization (BD) regarding the Channel State Information (CSI) errors, but both are similarly affected by the correlation among transmit antennas. The impact of uncoordinated interference was also evaluated, by modeling this interference with different covariance matrices in order to mimic several scenarios. The results showed that modifications on the IA algorithms can boost their performance, with an advantage to the approach that suppresses one stream, when the Bit Error Rate (BER) is compared. To combine both factors, the temporal channel variations were taken into account. At these set of simulations, besides the presence of an external interference, the precoders were calculated using a delayed CSI, leading to results that corroborate with the previous analyses. A recurring fact on the herein considered analyses was the dilemma of weather to apply the Joint Processing (JP)-based algorithms in order to achieve higher sum capacities or to send the information through a more reliable link by using IA. A reasonable step towards solving this dilemma is to actually perform the packet transmissions, which was accomplished by employing a system-level simulator composed by a large number of Transmission Points (TPs). As a result, all analyses conducted with this simulator showed that the IA technique can provide an intermediate performance between the non-cooperation and the full cooperation scheme. Concluding, one of the main contributions of this work has been to show some scenarios/cases where the IA technique can be applied. For instance, when the CSI is not reliable it can be better to use IA than a JP-based scheme. Also, the modifications on the algorithms to take into account the external interference can boost their performance. Finally, the IA technique finds itself in-between the conventional transmissions and Coordinated Multi-Point (CoMP). IA achieves an intermediate performance, while requiring a certain degree of cooperation among the neighboring sectors, but demanding less infrastructure than the JP-based schemes.
9

Substrate integrated waveguide antenna systems

Salem Hesari, Sara 29 January 2019 (has links)
Due to high demand for planar structures with low loss, a considerable amount of research has been done to the design of substrate integrated waveguide (SIW) components in the mm-wave and microwave range. SIW has many advantages in comparison to conventional waveguides and microstrip lines, such as compact and planar structure, ease of fabrication, low radiation loss, high power handling ability and low cost which makes it a very promising technology for current and future systems operating in K-band and above. Therefore, all the work presented in this dissertation focuses on SIW technology. Five di erent antenna systems are proposed to verify the advantages of using SIW technology. First, a novel K-band end- re SIW circularly polarized (CP) antenna system on a single layer printed-circuit board is proposed. A high gain SIW H-plane horn and a Vivaldi antenna are developed to produce two orthogonal polarizations in the plane of the substrate. CP antennas have become very popular because of their unique characteristics and their applications in satellites, radars and wireless communications. Second, a K-band front-end system for tracking applications is presented. The circuit comprises an antenna array of two Vivaldi antennas, a frequency-selective power combiner, and two frequency-selective SIW crossovers, which eliminate the need for subsequent ltering. The integration of monopulse systems in planar, printed circuit SIW technology combined with the added bene ts of ltering functions is of great importance to the antennas and propagation community. Third, a phased array antenna system consisting of 24 radiating element is designed as feed system for reflector antennas in radio astronomy applications. A Ku-band antipodal dipole antenna with wide bandwidth, low cross-polarization and wide beamwidth is suggested as the radiating element. Forth, four di erent right-angled power dividers including in-phase and out-of-phase dividers as feed systems for antenna arrays are introduced. TE10 - to - TEq0 mode transducers are used for obtaining two, three, and four output dividers with phase control ability at K- and Ka-band. This feature is practical, for instance, when designing tracking systems since they are employed to obtain controllable phase distributions over the output ports. Fifth, a Ku-band beam steering antenna system which is applicable to use for wireless communications, radar systems, and also 5G applications is proposed. This antenna system uses variable reflection-type phase shifters which electrically steer the beam over a 50-degree scan range. Therefore, the SIW technology's reliability and also promising behavior in the microwave frequency range is proven for di erent applications. / Graduate
10

Outage Probability Analysis for Distributed Antenna Systems in Composite Fading Channels

Huang, Tzu-Yu 24 August 2011 (has links)
A distributed antenna system (DAS) with inter-cell interference (ICI) in composite fading channel, where multipath and shadowing effect simultaneously exist, is considered in this thesis. How to properly choose a set of remote antennas (RAs) to provide spatial diversity as well as enhance the signal quality and transmission rate is the core concept in this work. Some approximation schemes are utilized to derive the closed form of statistical distributions for both the signal to interference ratio (SIR) and outage probability. According to these approximations and the position of mobile station, we can partition the service area into several different cooperative regions. Simulation results show that the derived approximations are very similar to the experiment results.

Page generated in 0.0848 seconds