Spelling suggestions: "subject:"interior cruciate ligament"" "subject:"interior cruciate iigament""
21 |
The feasibility of using video stereography to predict the length change of anterior cruciate ligament-cadaveric study.January 1997 (has links)
by Tsang Wai Nam. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1997. / Includes bibliographical references (leaves 163-176). / ACKNOWLEDGMENTS --- p.i / ABSTRACT --- p.ii / Chapter CHAPTER 1: --- INTRODUCTION --- p.1 / Chapter CHAPTER 2: --- LITERATURE REVIEW --- p.5 / Chapter 2.1 --- ACL ANATOMY AND BIOMECHANICS --- p.5 / Chapter 2.1.1 --- Microscopic anatomy --- p.5 / Chapter 2.1.2 --- Gross anatomy --- p.6 / Chapter 2.1.3 --- Functions of ACL --- p.9 / Chapter 2.1.4 --- Kinematics of ACL --- p.10 / Chapter 2.1.5 --- Biomechanics of ACL --- p.12 / Chapter 2.2 --- ACL INJURY --- p.16 / Chapter 2.2.1 --- Epidemiology --- p.16 / Chapter 2.2.2 --- Mechanism of injury --- p.16 / Chapter 2.2.3 --- Clinical signs and symptoms of ACL injury --- p.17 / Chapter 2.2.4 --- Consequences after ACL injury --- p.18 / Chapter 2.3 --- SURGICAL TREATMENT OF ACL INJURY --- p.19 / Chapter 2.3.1 --- ACL reconstruction --- p.19 / Chapter 2.3.2 --- Healing of the graft --- p.20 / Chapter 2.4 --- REHABILITATION --- p.22 / Chapter 2.4.1 --- Rehabilitation of the ACL-deficient knee --- p.22 / Chapter 2.4.2 --- Rehabilitation of the ACL-reconstructed knee --- p.22 / Chapter 2.5 --- KINEMATIC MEASUREMENT --- p.33 / Chapter 2.5.1 --- Reasons for kinematic measurement --- p.33 / Chapter 2.5.2 --- Measurement methods --- p.33 / Chapter 2.6 --- ROENTGEN STEREOPHOTOGRAMMETRIC ANALYSIS (RSA) --- p.45 / Chapter 2.6.1 --- Plain radiographic method --- p.45 / Chapter 2.6.2 --- RSA --- p.45 / Chapter 2.6.3 --- Convergent versus Biplane x-ray methods --- p.46 / Chapter 2.7 --- VIDEO STEREOGRAPHY --- p.49 / Chapter 2.7.1 --- Kinematic studies --- p.49 / Chapter 2.7.2 --- Strain studies --- p.52 / Chapter 2.7.3 --- Errors from video camera measurement --- p.53 / Chapter 2.8 --- EXTERNAL MARKERS --- p.54 / Chapter 2.8.1 --- Skin markers --- p.55 / Chapter 2.8.2 --- Plate markers --- p.55 / Chapter 2.8.3 --- Skeletal markers --- p.56 / Chapter 2.8.4 --- Virtual markers --- p.58 / Chapter 2.9 --- ARTHROSCOPY --- p.61 / Chapter 2.10 --- RATIONALE AND SCOPE OF THE PROJECT --- p.63 / Chapter CHAPTER 3: --- INSTRUMENTATION --- p.69 / Chapter 3.1 --- RSA --- p.69 / Chapter 3.1.1 --- Biplane x-ray apparatus --- p.69 / Chapter 3.1.2 --- Internal markers and implant instrument --- p.70 / Chapter 3.1.3 --- Plexi-glass calibration box --- p.71 / Chapter 3.1.4 --- Transparent digitizer and computer --- p.72 / Chapter 3.1.5 --- Accuracy of the RSA --- p.74 / Chapter 3.2 --- MOUNTING JIGS AND FORCE APPLICATION SYSTEM --- p.74 / Chapter 3.3 --- VIDEO STEREOGRAPHY --- p.76 / Chapter 3.3.1 --- PEAK motion measurement system --- p.76 / Chapter 3.3.2 --- External markers --- p.79 / Chapter 3.3.3 --- Calibration frame --- p.81 / Chapter 3.4 --- ARTHROSCOPY INSTRUMENT --- p.82 / Chapter CHAPTER 4: --- METHODOLOGY --- p.84 / Chapter 4.1 --- EXPERIMENTAL SET-UP --- p.84 / Chapter 4.1.1 --- Specimens --- p.84 / Chapter 4.1.2 --- Implantation of tantalum beads into the ACL --- p.84 / Chapter 4.1.3 --- Set-up of the video motion measurement system and x-ray --- p.86 / Chapter 4.1.4 --- Mounting of cadaveric knees --- p.88 / Chapter 4.1.5 --- Mounting of external markers --- p.88 / Chapter 4.1.6 --- Pre-conditioning --- p.89 / Chapter 4.1.7 --- Application of force --- p.89 / Chapter 4.1.8 --- X-ray and video camera capturing --- p.91 / Chapter 4.1.9 --- The conditions of ACL --- p.91 / Chapter 4.1.10 --- Digitization of x-ray images --- p.91 / Chapter 4.1.11 --- Digitization of video images --- p.92 / Chapter 4.2 --- TESTING OF INSTRUMENTATION --- p.93 / Chapter 4.2.1 --- Accuracy of the PEAK motion measurement system --- p.93 / Chapter 4.2.2 --- Reliability of the experimental set-up and migration of tantalum beads --- p.94 / Chapter 4.2.3 --- "Comparison of the x, y, and z coordinates of external markers imaged by RSA and video stereography" --- p.96 / Chapter 4.3 --- PREDICTION OF LENGTH CHANGE OF ACL --- p.96 / Chapter 4.4 --- BEHAVIOR OF ACL --- p.97 / Chapter CHAPTER 5: --- DATA ANALYSIS AND STATISTICAL METHODS --- p.98 / Chapter 5.1 --- MATHEMATICAL CALCULATION --- p.98 / Chapter 5.1.1 --- RSA calculation --- p.98 / Chapter 5.1.2 --- Determination of the length changes of ACL using RSA and video stereography --- p.102 / Chapter 5.1.3 --- Calculation of center of the external markers --- p.111 / Chapter 5.2 --- ACCURACY OF THE PEAK MOTION MEASUREMENT SYSTEM --- p.113 / Chapter 5.3 --- STATISTICAL METHODS --- p.114 / Chapter 5.3.1 --- Reliability of the experimental set-up and migration of tantalum beads / Chapter 5.3.2 --- "Comparison of the x, y, and z coordinates of external markers imaged by RSA and video stereography" --- p.114 / Chapter 5.3.3 --- Prediction of length change of ACL --- p.115 / Chapter 5.3.4 --- Behavior of ACL --- p.115 / Chapter CHAPTER 6: --- RESULT --- p.116 / Chapter 6.1 --- ACCURACY OF THE PEAK MOTION MEASUREMENT SYSTEM --- p.116 / Chapter 6.2 --- RELIABILITY OF THE EXPERIMENTAL SET-UP --- p.117 / Chapter 6.3 --- MIGRATION OF TANTALUM BEADS --- p.120 / Chapter 6.4 --- "COMPARISON OF THE X,Y, AND Z COORDINATES OF EXTERNAL MARKERS IMAGED BY RSA AND VIDEO STEREOGRAPHY" --- p.123 / Chapter 6.5 --- PREDICTION OF LENGTH CHANGE OF ACL --- p.125 / Chapter 6.6 --- BEHAVIOR OF ACL --- p.129 / Chapter 6.6.1 --- Comparison of length changes in different conditions of ACL --- p.130 / Chapter 6.6.2 --- Comparison of length changes of AM and PL bundles of ACL --- p.131 / Chapter CHAPTER 7: --- DISCUSSION --- p.132 / Chapter 7.1 --- LIMITATIONS --- p.132 / Chapter 7.2 --- VIDEO STEREOGRAPHY --- p.135 / Chapter 7.2.1 --- Accuracy of the PEAK motion measurement system --- p.135 / Chapter 7.2.2 --- Prediction of length change of ACL by video stereography --- p.138 / Chapter 7.2.3 --- External markers --- p.144 / Chapter 7.3 --- BEHAVIOR OF ACL --- p.145 / Chapter 7.3.1 --- Effect of sectioning on the behavior of ACL as measured by RSA --- p.146 / Chapter 7.3.2 --- The behavior of AM and PL bundles as measured by RSA --- p.147 / Chapter 7.3.3 --- Comparison of the RSA and video stereography systems in the study of the behavior of ACL --- p.149 / Chapter 7.4 --- SOURCES OF ERROR --- p.151 / Chapter 7.5 --- CLINICAL APPLICATIONS --- p.153 / Chapter 7.5.1 --- Suggestions to the logistic of the video stereography in in vivo --- p.153 / Chapter 7.5.2 --- Suggested clinical applications --- p.156 / Chapter 7.6 --- FUTURE STUDY --- p.158 / Chapter 7.7 --- CONCLUSIONS --- p.162 / REFERENCES --- p.163 / APPENDICES --- p.177 / Chapter 1. --- Mathematical derivations for RSA system --- p.177 / Chapter 2. --- Computer program for the RSA system: BP41 EXE --- p.186 / Chapter 3. --- Computer program to find the center of the external markers: FINDCG.EXE --- p.191 / Chapter 4. --- Data and statistical results --- p.196
|
22 |
Anterior cruciate ligament injury mechanisms in female athletes : a finite element investigationQuatman, Carmen E. January 2009 (has links)
Dissertation (Ph.D.)--University of Toledo, 2009. / "In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Sciences." Title from title page of PDF document. Bibliography: p. 128-144.
|
23 |
Tissue engineered braided hybrid fiber scaffold for anterior cruciate ligament reconstructionTovar, Nicky. January 2009 (has links)
Thesis (Ph. D.)--Rutgers University, 2009. / "Graduate Program in Biomedical Engineering." Includes bibliographical references (p. 102-113).
|
24 |
Kinematic analysis of rotation pattern of ACL deficient knee, ACL reconstructed knee and normal knee during single leg hop and pivot shift test /Wong, Yeuk-hung. January 2000 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2001. / Includes bibliographical references (leaves 223-235).
|
25 |
Knee function after ACL rupture and reconstruction effects of neuromuscular trainingHartigan, Erin. January 2009 (has links)
Thesis (Ph.D.)--University of Delaware, 2009. / Principal faculty advisor: Lynn Snyder-Mackler, Dept. of Physical Therapy. Includes bibliographical references.
|
26 |
The mechanical study of double-tunnel-double-bundle anterior cruciate ligament reconstructive surgery : graft and tibial/femoral channel performanceChizari, Mahmoud January 2011 (has links)
This is an interdisciplinary research project in which the methods of biomechanical and design engineering are focused upon a problem in orthopaedics. The anterior cruciate ligament (ACL) is the major ligament in the knee and is often torn during athletic competition as well as every day activity. The ACL is made up of two functional bundles, which help to stabilize the knee. Until recently, ACL reconstruction only replaced one of these bundles; however, research shows that both bundles should be replaced to more fully restore normal knee functionality. The aim of the research was, therefore, to evaluate the mechanical aspects of the double-tunnel-double-bundle ACL reconstruction technique. The research was directed towards designing a new and improved surgical device to improve ACL reconstruction: The current study used a computational model and experimental testing to explore the mechanical parameters of the tendon graft and knee bones to investigate the effects of double tunnel drilling in tibia and femur during ACL reconstruction. The thesis presents the findings of research into three aspects of double-tunnel-double-bundle ACL reconstruction. The first aspect of the study involves clinical and computational analysis of a single-tunnel-singlebundle (SB) ACL reconstructed knee with a double-tunnel-double-bundle (DB) ACL reconstructed example. The study tried to show the advantage of the DB technique over the conventional SB technique. The anatomical geometries of both SB and DB examples were used to create a finite element model and investigate the relative merits of single and double tunnelling, the variations of graft pretension, and tunnel placement on bone stress. The experimental and computational results of both methods were compared and discussed. The second study investigated whether tripling a tendon when using suspensory fixation provides inferior graft strength and a greater cyclical elongation than a doubled tendon graft with suspensory fixation. The tensile stress was found to be lower in the third strand than in the doubled portion. The study was focussed on the mechanical assessment of two different methods of tripling tendons when using suspensory fixation. The third aspect of the study focussed on the design of a new device for fixation of the femoral tripled tendon graft in DB ACL reconstruction technique. The study describes a series of designs and prototypes that were iteratively developed and experimentally tested, leading to a novel tripled tendon graft device. The function of the new device was compared with the conventional methods and tested with a number of animal tendons and bones. The new device with a tripled tendon graft resulted in higher pull-out strength and less graft elongation than that seen using a conventional tripling method.
|
27 |
Instantaneous center of rotation shifts in symptomatic anterior cruciate ligament deficient knee jointsSimmonds, Michael John January 1990 (has links)
The purpose of this investigation was to document the influence of the anterior cruciate ligament (ACL) in controlling the dynamic interaction between the femur and tibia. Twenty subjects were initially selected to participate based on the results of arthroscopic and proprioceptive tests which established the presence of a uni-lateral, third degree rupture of the ACL. A spline function established the best fitting curve of the instant center (IC) coordinates obtained throughout the ROM. Displacement variables were extrapolated from joint rotation profiles generated from these coordinates. Abnormal displacement migrations of the IC parameter were demonstrated to occur in extension. Migration displacements evaluated between 30$ sp circ$ and 0$ sp circ$ shifted anteriorly 5.07 $ pm$ 1.86 mm for intact knees and 6.97 $ pm$ 2.06 mm for involved knees. This was determined to be significant at the 0.05 level of confidence and correlated well with clinical findings. Mean migration displacements evaluated in flexion (between 100$ sp circ$ and 70$ sp circ)$ were not found to differ significantly between knee conditions.
|
28 |
The effects of cryopreservation on the viscoelastic properties of the canine anterior cruciate ligamentSanchez, Daniel Andres 12 1900 (has links)
No description available.
|
29 |
The Variability of Neuromuscular Control During Knee Extension PerformanceFung, Stephen 02 June 2014 (has links)
Movement variability that occurs while performing repetitions of any particular motion can be due to errors in one’s ability to select the required parameters for executing the movement. However, it has been suggested that an optimal amount of variability exists in a healthy system providing adaptability to varying situations while producing negligible errors. Investigation of the consistency of movement variability in a system may provide information regarding joint control and integrity since the functionality of a system can be disrupted by injury. Rupture of the anterior cruciate ligament is associated with deficits in knee joint stability and mobility, as well as altered movement patterns. There is value in developing a simple clinical test that can measure knee joint stability and evaluate the degree of knee damage and rate of progress during rehabilitation. The main objectives were to investigate the normal range of variability during repeated knee extensions in healthy subjects and subjects with a reconstructed anterior cruciate ligament, and to evaluate the reliability of the method.
There were 30 participants in the control group and 8 in the subject group. All were physically active a minimum of 2-3 times per week for a total of 2-3 hours. Mean variance and mean correlation were used to evaluate variability in this study. Change in mean variance and mean correlation, standard error of measurement and intra-class correlation coefficient were used to evaluate reliability.
The results showed the range of values for movement variability in control and subject groups. Standard error of measurement indicated mean correlation (1.31% to 2.38%) was more reliable than mean variance (21.80% to 54.87%). Mean variance and mean correlation significantly increased with speed, and mean correlation was significantly higher for dominant legs during trials at 70 beats per minute. / Thesis (Master, Kinesiology & Health Studies) -- Queen's University, 2014-06-02 12:18:42.802
|
30 |
Isokinetic evaluation of muscle strength in the anterior cruciate ligament reconstructed knee :Roche, Deborah. Unknown Date (has links)
Thesis (MAppSc in Physiotherapy)--University of South Australia, 1995
|
Page generated in 0.0733 seconds