Spelling suggestions: "subject:"antitumour activity"" "subject:"intratumour activity""
1 |
Evaluation of the safety of C-1311 (SYMADEX) administered in a phase 1 dose escalation trial as a weekly infusion for 3 consecutive weeks in patients with advanced solid tumours.Isambert, N., Campone, M., Bourbouloux, E., Drouin, M., Major, A., Yin, W., Loadman, Paul, Capizzi, R., Grieshaber, C., Fumoleau, P. January 2010 (has links)
No / PURPOSE: C-1311 is a member of the novel imidazoacridinone family of anticancer agents. This phase 1 trial was designed to investigate the safety, tolerability and preliminary anti-tumour activity of C-1311.
PATIENTS AND METHODS: This was a phase 1, inter-subject dose escalating and pharmacokinetic study of intravenous (IV) C-1311, administered weekly during 3consecutive weeks followed by 1week rest (constituting 1 cycle) in subjects with advanced solid tumours.
RESULTS: Twenty-two (22) patients were treated with C-1311, the highest dose given was 640mg/m(2). All subjects experienced one or more treatment-related adverse events (AEs). The most frequently observed treatment-related AEs were neutropaenia and nausea (50% each), followed by vomiting (27%), anaemia (23%), asthenia (23%) and diarrhoea (18%). Most treatment-related AEs were of Common Terminology Criteria for Adverse Events (CTCAE) grades 1-2, except for the blood and lymphatic system disorders, which were primarily of grades 3-4. The recommended dose (RD) of C-1311 administered as once weekly IV infusions for 3weeks every 4weeks is 480mg/m(2), with the dose limiting toxicity (DLT) being grade 4 neutropaenia lasting more than 7days. Treatment at this dose offers a predictable safety profile and excellent tolerability.
CONCLUSION: The safety profile and preliminary anti-tumour efficacy of C-1311, observed in this broad-phase dose-finding study, warrants further evaluation of the compound.
|
2 |
Role of the bone morphogenetic protein signalling in skin carcinogenesis : effect of transgenic overexpression of BMP antognist Noggin on skin tumour development : molecular mechanisms underlying tumour suppressive role of the BMP signalling in skinMardaryev, Andrei N. January 2009 (has links)
Bone morphogenetic protein (BMP) signalling plays key roles in skin development and also possesses a potent anti-tumour activity in postnatal skin. To study mechanisms of the tumour-suppressive role of BMPs in the skin, a transgenic (TG) mouse model was utilized, in which a transgenic expression of the BMP antagonist Noggin was targeted to the epidermis and hair follicles (HFs) via Keratin 14 promoter. K14-Noggin mice developed spontaneous HF-derived tumours, which resembled human trichofolliculoma. Initiation of the tumours was associated with a marked increase in cell proliferation and an expansion of the hair follicle stem/early progenitor cells. In addition, the TG mice showed hyperplastic changes in the sebaceous glands and the interfollicular epidermis. The epidermal hyperplasia was associated with an increase in the susceptibility to chemically-induced carcinogenesis and earlier malignant transformation of chemically-induced papillomas. Global gene expression profiling revealed that development of the trichofolliculomas was associated with an increase in the expression of the components of several pro-oncogenic signalling pathways (Wnt, Shh, PDGF, Ras, etc.). Specifically, expression of the Wnt ligands and (β-catenin/Lef1) markedly increased at the initiation stage of tumour formation. In contrast, expression of components of the Shh pathway was markedly increased in the fully developed tumours, compared to the tumour placodes. Pharmacological treatment of the TG mice with the Wnt and Shh antagonists resulted in the stage-dependent inhibition of the tumour initiation and progression, respectively. Further studies revealed that BMP signalling antagonizes the activity of the Wnt and Shh pathways via distinct mechanisms, which include direct regulation of the expression of the tumour suppressor Wnt inhibitory factor 1 (Wif1) and indirect effects on the Shh expression. Thus, tumour suppressor activity of the BMPs in skin epithelium depends on the local concentrations of Noggin and is mediated, at least in part, via stage-dependent antagonizing of the Wnt and Shh signalling pathways.
|
3 |
Role of the bone morphogenetic protein signalling in skin carcinogenesis. Effect of transgenic overexpression of BMP antognist Noggin on skin tumour development; molecular mechanisms underlying tumour suppressive role of the BMP signalling in skin.Mardaryev, Andrei N. January 2009 (has links)
Bone morphogenetic protein (BMP) signalling plays key roles in skin development and also possesses a potent anti-tumour activity in postnatal skin. To study mechanisms of the tumour-suppressive role of BMPs in the skin, a transgenic (TG) mouse model was utilized, in which a transgenic expression of the BMP antagonist Noggin was targeted to the epidermis and hair follicles (HFs) via Keratin 14 promoter. K14-Noggin mice developed spontaneous HF-derived tumours, which resembled human trichofolliculoma. Initiation of the tumours was associated with a marked increase in cell proliferation and an expansion of the hair follicle stem/early progenitor cells. In addition, the TG mice showed hyperplastic changes in the sebaceous glands and the interfollicular epidermis. The epidermal hyperplasia was associated with an increase in the susceptibility to chemically-induced carcinogenesis and earlier malignant transformation of chemically-induced papillomas.
Global gene expression profiling revealed that development of the trichofolliculomas was associated with an increase in the expression of the components of several pro-oncogenic signalling pathways (Wnt, Shh, PDGF, Ras, etc.). Specifically, expression of the Wnt ligands and (¿-catenin/Lef1 markedly increased at the initiation stage of tumour formation. In contrast, expression of components of the Shh pathway was markedly increased in the fully developed tumours, compared to the tumour placodes. Pharmacological treatment of the TG mice with the Wnt and Shh antagonists resulted in the stage-dependent inhibition of the tumour initiation and progression, respectively.
Further studies revealed that BMP signalling antagonizes the activity of the Wnt and Shh pathways via distinct mechanisms, which include direct regulation of the expression of the tumour suppressor Wnt inhibitory factor 1 (Wif1) and indirect effects on the Shh expression.
Thus, tumour suppressor activity of the BMPs in skin epithelium depends on the local concentrations of Noggin and is mediated, at least in part, via stage-dependent antagonizing of the Wnt and Shh signalling pathways. / University of Bradford, NIH and BBSRC.
|
Page generated in 0.0648 seconds