1 |
The role interleukin-1 receptors in tumor promoter-elicited events in skin carcinogenesis /Perry, Denise Ayntoinette, January 1998 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 1998. / Vita. Includes bibliographical references (leaves 174-206). Available also in a digital version from Dissertation Abstracts.
|
2 |
The role of the EP2 receptor for prostaglandin E2 in mouse skin carcinogenesisSung, You Me, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2005. / Vita. Includes bibliographical references.
|
3 |
The regulation of the interleukin 1 receptor antagonist in mouse skin carcinogenesis /La, Eunhye, January 1999 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 1999. / Vita. Includes bibliographical references (leaves 178-199). Available also in a digital version from Dissertation Abstracts.
|
4 |
Keratinocyte secretory phospholipase A₂s : its characterization, modulation, and role in mouse skin carcinogenesis /Stiles, Bangyan Li, January 1998 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 1998. / Vita. Includes bibliographical references (leaves 195-227). Available also in a digital version from Dissertation Abstracts.
|
5 |
Protective Molecular Mechanisms of Resveratrol in UVR-Induced Skin CarcinogenesisAziz, Saba W., Aziz, Moammir H. 01 January 2018 (has links)
Skin cancer is a major health problem worldwide. It is the most common cancer in the United States and poses a significant healthcare burden. Excessive UVR exposure is the most common cause of skin cancer. Despite various precautionary measures to avoid direct UVR exposure, the incidence of skin cancer and mortality related to it remains high. Furthermore, the current treatment options are expensive and have side effects including toxicity to normal cells. Thus, a safe and effective approach is needed to prevent and treat skin cancer. Chemopreventive strategy using naturally occurring compounds, such as resveratrol, is a promising approach to reduce the incidence of UVR-induced skin cancer and delay its progression. This review highlights the current body of evidence related to chemopreventive role of resveratrol and its molecular mechanisms in UVR-induced skin carcinogenesis.
|
6 |
Mitochondrial uncoupling protein 3 blocks skin carcinogenesis and drives bulge stem cell differentiation and epidermal turnoverLago, Cory Ungles 09 August 2012 (has links)
Malignant cells increase glycolysis and down regulate mitochondrial respiration for ATP production. Mechanisms for respiratory impairment in cancerous cells and their importance for carcinogenesis are not well defined. We found that expression of the respiration-inducing uncoupling protein 3 (UCP3) was normally expressed in murine skin and was greatly decreased in cutaneous malignancies. To better understand the significance of UCP3 in epidermal biology and to test the importance of respiratory changes in cancer development, we generated hemizygous mice expressing a keratin-5 promoter-UCP3 transgene (K5-UCP3). Compared to wild type, K5-UCP3 mice exhibited increased cutaneous mitochondrial respiration, had decreased mitochondrial membrane potential in isolated keratinocytes, and were completely resistant to chemically-induced skin carcinogenesis. We showed that the mechanism of UCP3-dependent cancer protection is most likely not due to increased intracellular heat production or ATP depletion in pre-cancerous cells. Therefore, because hair follicle "bulge" stem cells (bSC) are K5⁺ and progenitors of cutaneous carcinomas, we hypothesized that K5-UCP3 animals were protected from skin carcinogenesis due to alterations in their bSC population. Unlike WT, most (85%) hair follicle bulge regions in K5-UCP3 mice lost biochemical markers of quiescent bSC, but bSC functions were fully intact. Supporting our hypothesis that increased skin turnover protected K5-UCP3 mice from skin cancer; we showed that basal keratinocyte cell cycling was increased 3% in K5-UCP3 skin compared to WT. Moreover, the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) induced similar proliferative responses in both WT and K5-UCP3 skin, but the magnitude of TPA-induced skin thickening was greatly decreased in K5-UCP3 versus WT mice. Together with microarray, histochemical and in vitro morphologic analyses showing that keratinocyte differentiation was sharply increased in K5-UCP3 skin, this implies that UCP3 may increase keratinocyte transit from stem to differentiated daughter cells. Thus, the cancer resistance mechanism in K5-UCP3 mice likely stems from UCP3-induced mitochondrial respiration, which promotes the differentiation and abrogates the tumorigenicity of progenitor keratinocytes. This is the first demonstration in any context that UCP3 blocks carcinogenesis and promotes cellular differentiation. These observations support Warburg's contention that respiratory dysfunction promotes cancer development, and suggest that mitochondrial uncoupling may be a novel target for cancer prevention and treatment. / text
|
7 |
Determination the Role of Constitutive Nitric Oxide Synthase in Skin Carcinogenesis Post UV IrradiationZhou, Yuxi 05 June 2023 (has links)
No description available.
|
8 |
Role of the bone morphogenetic protein signalling in skin carcinogenesis : effect of transgenic overexpression of BMP antognist Noggin on skin tumour development : molecular mechanisms underlying tumour suppressive role of the BMP signalling in skinMardaryev, Andrei N. January 2009 (has links)
Bone morphogenetic protein (BMP) signalling plays key roles in skin development and also possesses a potent anti-tumour activity in postnatal skin. To study mechanisms of the tumour-suppressive role of BMPs in the skin, a transgenic (TG) mouse model was utilized, in which a transgenic expression of the BMP antagonist Noggin was targeted to the epidermis and hair follicles (HFs) via Keratin 14 promoter. K14-Noggin mice developed spontaneous HF-derived tumours, which resembled human trichofolliculoma. Initiation of the tumours was associated with a marked increase in cell proliferation and an expansion of the hair follicle stem/early progenitor cells. In addition, the TG mice showed hyperplastic changes in the sebaceous glands and the interfollicular epidermis. The epidermal hyperplasia was associated with an increase in the susceptibility to chemically-induced carcinogenesis and earlier malignant transformation of chemically-induced papillomas. Global gene expression profiling revealed that development of the trichofolliculomas was associated with an increase in the expression of the components of several pro-oncogenic signalling pathways (Wnt, Shh, PDGF, Ras, etc.). Specifically, expression of the Wnt ligands and (β-catenin/Lef1) markedly increased at the initiation stage of tumour formation. In contrast, expression of components of the Shh pathway was markedly increased in the fully developed tumours, compared to the tumour placodes. Pharmacological treatment of the TG mice with the Wnt and Shh antagonists resulted in the stage-dependent inhibition of the tumour initiation and progression, respectively. Further studies revealed that BMP signalling antagonizes the activity of the Wnt and Shh pathways via distinct mechanisms, which include direct regulation of the expression of the tumour suppressor Wnt inhibitory factor 1 (Wif1) and indirect effects on the Shh expression. Thus, tumour suppressor activity of the BMPs in skin epithelium depends on the local concentrations of Noggin and is mediated, at least in part, via stage-dependent antagonizing of the Wnt and Shh signalling pathways.
|
9 |
Role of the bone morphogenetic protein signalling in skin carcinogenesis. Effect of transgenic overexpression of BMP antognist Noggin on skin tumour development; molecular mechanisms underlying tumour suppressive role of the BMP signalling in skin.Mardaryev, Andrei N. January 2009 (has links)
Bone morphogenetic protein (BMP) signalling plays key roles in skin development and also possesses a potent anti-tumour activity in postnatal skin. To study mechanisms of the tumour-suppressive role of BMPs in the skin, a transgenic (TG) mouse model was utilized, in which a transgenic expression of the BMP antagonist Noggin was targeted to the epidermis and hair follicles (HFs) via Keratin 14 promoter. K14-Noggin mice developed spontaneous HF-derived tumours, which resembled human trichofolliculoma. Initiation of the tumours was associated with a marked increase in cell proliferation and an expansion of the hair follicle stem/early progenitor cells. In addition, the TG mice showed hyperplastic changes in the sebaceous glands and the interfollicular epidermis. The epidermal hyperplasia was associated with an increase in the susceptibility to chemically-induced carcinogenesis and earlier malignant transformation of chemically-induced papillomas.
Global gene expression profiling revealed that development of the trichofolliculomas was associated with an increase in the expression of the components of several pro-oncogenic signalling pathways (Wnt, Shh, PDGF, Ras, etc.). Specifically, expression of the Wnt ligands and (¿-catenin/Lef1 markedly increased at the initiation stage of tumour formation. In contrast, expression of components of the Shh pathway was markedly increased in the fully developed tumours, compared to the tumour placodes. Pharmacological treatment of the TG mice with the Wnt and Shh antagonists resulted in the stage-dependent inhibition of the tumour initiation and progression, respectively.
Further studies revealed that BMP signalling antagonizes the activity of the Wnt and Shh pathways via distinct mechanisms, which include direct regulation of the expression of the tumour suppressor Wnt inhibitory factor 1 (Wif1) and indirect effects on the Shh expression.
Thus, tumour suppressor activity of the BMPs in skin epithelium depends on the local concentrations of Noggin and is mediated, at least in part, via stage-dependent antagonizing of the Wnt and Shh signalling pathways. / University of Bradford, NIH and BBSRC.
|
Page generated in 0.1155 seconds