• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of molecularly imprinted polymers for chemical sensors / Développement de polymères à empreintes moléculaires pour capteurs chimiques

Leibl, Nadja 07 December 2018 (has links)
Cette thèse propose une approche rationnelle pour le design de polymères à empreintes moléculaires (MIPs) pour la détection de nitro-explosifs. Les polymères à empreintes moléculaires qui miment la reconnaissance moléculaire biologique, ont l’avantage d’être stables dans des environnements sévères et peuvent adopter différentes formes physiques pour le couplage avec des transducteurs. Leur synthèse est basée sur la co-polymérisation de monomères fonctionnels et réticulants en présence de la molécule cible, ou comme dans cette thèse, d’un analogue ayant une structure proche de celle de la molécule cible. Cela conduit à la formation d’un réseau polymérique tridimensionnel rigide avec des sites de liaison complémentaires en taille, forme et position des groupes fonctionnels de la molécule cible ou de l’analogue. Pour identifier le meilleur monomère fonctionnel pour notre molécule cible, une approche rationnelle basée sur la modélisation moléculaire, la résonance magnétique nucléaire (RMN) et le titrage par calorimétrie isotherme (ITC) a été utilisée. Elle permet d’optimiser le mélange de pré-polymérisation pour identifier le monomère fonctionnel interagissant le plus fortement avec la molécule cible. Les résultats obtenus ont été confrontés à des études de liaison à partir de polymères synthétisés. La formulation polymérique ainsi conçue est intégrée aux surfaces du transducteur sous forme de nanoparticules, de films et de nanoparticules incorporés dans des films de polydopamine électropolymérisés. En plus des polymères traditionnels obtenus par polymérisation radicalaire classique sous forme de particules, des films de MIP à base de polydopamine électropolymérisés ont été étudiés en tant qu'approche alternative pour la détection électrochimique de nitro-explosifs. / This thesis proposes a rational design approach towards molecularly imprinted polymers (MIPs) for sensing nitro-explosives. Molecularly imprinted polymers are mimicking biological molecular recognition. They have the advantage to be stable in harsh environments and can be tailored into different physical forms for interfacing with transducers. Their synthesis is based on the co-polymerization of functional and cross-linking monomers in the presence of the target analyte or, as in this thesis, with a structural analogue leading to a rigid three-dimensional polymer network with binding sites complementary to the template in size, shape and position of the functional groups. The choice of the functional monomer was carried out with a rational design approach combining molecular modelling, nuclear magnetic resonance (NMR) and isothermal calorimetry (ITC) studies. This allows to optimize the pre-polymerization mixture in order to get strong complexation between the functional monomer and the template. The obtained results were confronted with binding studies performed on synthesized polymers. The thus designed polymer formulation was interfaced with transducer surfaces in form of nanoparticles, films and nanoparticles embedded into electro-polymerized polydopamine films. In addition to the traditional MIPs by free radical polymerization, molecularly imprinted in-situ electro-polymerized polydopamine films were investigated as an alternative approach for sensing nitro-explosives electrochemically.
2

Solid-phase synthesis of molecularly imprinted polymer nanoparticles for protein recognition / Synthèse en phase solide de nanoparticules de polymères à empreintes moléculaires pour la reconnaissance de protéines

Xu, Jingjing 21 April 2017 (has links)
Cette thèse décrit la synthèse de nanoparticules de polymères à empreintes moléculaires (MIP, de l’anglais molecularly imprinted polymer) pour la reconnaissance de protéines, par une approche de synthèse en phase solide. Les polymères à empreintes moléculaires sont des récepteurs biomimétiques synthétisés sur mesure par un processus de nanomoulage du polymère autour de la molécule unique. Ils possèdent ainsi des cavités de reconnaissance spécifiques pour leur molécule cible. La technique de l'impression moléculaire pour les petites molécules cibles est bien établie, alors que l'impression de protéines reste encore un défi en raison de la flexibilité et complexité de leur structure native et de leurs nombreux sites fonctionnels, mais aussi en raison de leur faible stabilité dans des conditions inhabituelles. Par conséquent, une approche de synthèse en phase solide a été développée ici où la protéine est immobilisée sur un support avant la synthèse de nanoparticules hydrosolubles de MIP par polymérisation radicalaire. Les MIPs obtenus ont des affinités comparables à celles des anticorps, et des réactivités croisées faibles. Ils possèdent des avantages tels qu'une stabilité meilleure, un coût plus faible et peuvent potentiellement être régénérés et réutilisés, devenant ainsi des alternatives prometteuses aux anticorps naturels. Nous avons fabriqué des MIPs contre des protéases à sérine, telles la trypsine et la kallikréine, mais aussi contre un épitope peptidique de la protéine gp41 du VIH. Des nanogels de MIP thermosensibles ont été synthétisés dans un réacteur sous la forme d’une colonne thermostatée ou une boîte de Pétri, par polymérisation radicalaire initiée par voie thermique ou photochimique. Un simple changement de la température permet de libérer les MIPs de la protéine immobilisée. Ces MIPs sont hydrosolubles en fonction de la température et ont un diamètre inférieur à 100 nm. Leur affinité pour leur cible est élevée, avec un Kd du nano ou picomolaire. Ces 'anticorps synthétiques' ont été appliqués dans des tests d'adsorption sur microbalance à cristal de quartz, mais également comme 'chaperons synthétiques'. Des études préliminaires de la protection des protéines d'une dénaturation thermique ou par un pH défavorable ont été effectuées. L'utilisation d'un iniferter pour initier la photopolymérisation vivante du MIP a permis de synthétiser des nanogels de type core-shell. En introduisant des marqueurs fluorescents dans les MIPs, les tests d’immunoessai dans des fluides biologiques ont été démontrés, ce qui indique le grand potentiel de ces MIPs dans le diagnostic clinique. En conclusion, nous avons développé une nouvelle approche de synthèse de nanoparticules de MIP hydrosoluble ayant une haute affinité pour une protéine, utilisables à la place des anticorps dans des applications dans le monde réel tel que la détection de protéines biomarqueurs dans des échantillons complexes, et potentiellement comme principe actif in vivo. / This thesis describes the synthesis, by a solid-phase synthesis approach, of nanoparticles of molecularly imprinted polymers (MIPs) for the recognition of proteins. Molecularly imprinted polymers are biomimetic receptors synthesized by a nanomolding process of the polymer around single molecules. They therefore possess specific recognition cavities for their target molecule. The technique of molecular imprinting for small target molecules is well established, while protein imprinting remains a challenge due to the flexibility and complexity of their native structure and functional sites, but also because of their low stability under unusual conditions. Therefore, a solid-phase synthesis approach has been developed where the protein is immobilized on a support before the synthesis of water-soluble MIP nanogel particles by radical polymerization. The MIPs obtained have affinities comparable to those of antibodies, and low cross-reactivities. They have advantages such as better stability, lower cost, and can potentially be regenerated and reused, thus becoming promising alternatives to real antibodies. We have synthesized MIPs against serine proteases such as trypsin, and kallikrein, but also against a peptide epitope of the HIV gp41 protein. Thermosensitive MIP nanogels were synthesized in a thermostated column-type reactor or a petri dish, by thermally or photo-initiated radical polymerization. Their thermosensitivity allows the MIPs to be released from the immobilized protein by a simple temperature change. They are water-soluble as a function of temperature and have a diameter of less than 100 nm. Their affinity for their target is strong, with a Kd in the nano or picomolar range. These 'synthetic antibodies' have been applied in binding assays with quartz crystal microbalance, but also as 'synthetic chaperones'. Preliminary studies of the protection of proteins from thermal denaturation or from denaturation by an unfavorable pH have been carried out. The use of an iniferter to initiate the living photopolymerization of MIP made it possible to synthesize nanogels of core-shell type. By introducing fluorescent markers into MIPs, immunoassay applications in biological fluids have been demonstrated, indicating the great potential of these MIPs in clinical diagnostics. In conclusion, we have developed a novel approach to the synthesis of soluble MIP nanoparticles having high affinity for a protein, usable in place of antibodies in real world applications such as the detection of biomarker proteins in complex samples, and potentially as an active principle in vivo.
3

Molecularly imprinted polymers as selective sorbents for recognition in complex aqueous samples / Polymères à empreintes moléculaires en tant qu’adsorbants sélectifs pour la reconnaissance dans des milieux aqueux complexes

Nestora, Sofia 13 April 2017 (has links)
Dans cette thèse, nous avons démontré la faisabilité de la préparation de polymères à empreinte moléculaires (MIP) hautement sélectifs pour la reconnaissance dans des matrices aqueuses complexes avec des applications dans les cosmétiques et en technologie alimentaire. Les MIP (de l'anglais molecularly imprinted polymers) sont des récepteurs synthétiques comparables aux anticorps, qui sont synthétisés par co-polymérisation de monomères fonctionnels et réticulants en présence d'un gabarit moléculaire. Leurs propriétés de reconnaissance moléculaire, associées à leur grande stabilité, robustesse mécanique, faible coût et leur synthèse facile les rendent extrêmement intéressants comme matériaux de capture sélective, avec des applications dans les séparations analytiques, la détection et la vectorisation des médicaments. Cependant, leur reconnaissance sélective dans des milieux aqueux reste toujours problématique et c'est l'une des raisons de leur expansion commerciale restreinte. Dans une première partie, nous avons développé un MIP fonctionnant en milieu aqueux pour son application comme ingrédient actif dans un déodorant. Les odeurs corporelles sont principalement dues à des acides gras volatils générés à partir de leurs précurseurs, des conjugués de glutamine par des enzymes hydrolytiques produites à partir de bactéries présentes sur la peau. La plupart des anti-transpirants et des déodorants actuellement commercialisés contiennent des sels d'aluminium et des agents antibactériens non spécifiques, respectivement. Cependant, l'utilisation extrêmement étendue de ces produits nécessite des solutions alternatives en ce qui concerne divers problèmes (environnement, respect de l'écosystème de la peau, toxicité, etc.). Pour cette raison, un MIP a été synthétisé pour capturer les précurseurs conjugués de glutamine afin qu'ils ne soient plus disponibles aux bactéries, empêchant ainsi leur transformation en composés malodorants. Afin de générer des liaisons sélectifs dans des environnements aqueux, un monomère à base d'amidinium qui peut former une interaction électrostatique stoechiométrique forte avec les groupes carboxyle sur le gabarit moléculaire a été synthétisé. Le MIP, mélangé dans une formulation dermo-cosmétique, pourrait capter sélectivement les précurseurs conjugués de glutamine, au milieu d'une multitude d'autres molécules présentes dans la sueur humaine. En outre, le MIP n’affecte pas les bactéries de la peau, ouvrant la voie à des déodorants innovateurs de nouvelle génération, moins problématiques pour la santé. Dans une deuxième partie, nous avons développé une procédure rapide et efficace basée sur l'extraction en phase solide à empreinte moléculaire (MISPE) pour la purification sélective de la bétanine et de son stéréoisomère l’isobétanine à partir d'extraits de betterave. La bétanine est un pigment naturel ayant un fort pouvoir antioxydant et dont les propriétés pharmacologiques sont de plus en plus étudiées. Ce pigment est actuellement utilisé comme simple colorant alimentaire. Dans notre étude, l'acide dipicolinique a été utilisé comme gabarit moléculaire pour la synthèse de MIP, en raison de sa similarité structurelle avec le groupe chromophore de la bétanine. Les procédures MISPE ont été optimisées permettant l'élimination presque complète des glucides issus de la matrice végétale ainsi que la majorité des protéines, ce qui permet d'obtenir un rendement élevé d'extraction de la bétanine / isobétanine en une seule étape. De plus, toute la procédure d'extraction a été réalisée dans des solvants respectueux de l'environnement, tels que l'éthanol ou l'eau. Pour conclure, nous sommes convaincus que ce travail pave le chemin au développement d'une nouvelle génération des MIP fonctionnant en milieu aqueux avec des propriétés de reconnaissance améliorées dans des environnements complexes, qui pourra s'appliquer également à d'autres domaines biotechnologiques et biomédicaux. / In this thesis, we have demonstrated the feasibility of preparing highly selective molecularly imprinted polymers (MIPs) for recognition in complex aqueous matrices with applications in cosmetics and food technology. MIPs are synthetic tailor-made receptors, with binding affinities and specificities comparable to those of natural antibodies. Their molecular recognition properties, combined with their high stability, mechanical robustness, low cost and easy synthesis make them extremely attractive as selective capture materials with applications in analytical and preparative separations, sensing and drug delivery, among others. However, their selective recognition in aqueous samples still remains problematic and is one of the reasons for their so far lilited commercial expansion. In the first part, we developed a water compatible MIP for its application as an active ingredient in a deodorant. Body odors are mainly due to volatile fatty acids generated from their glutamine conjugate precursors by hydrolytic enzymes from bacteria present on the skin. Most currently marketed anti-perspirants and deodorants contain, respectively aluminum salts and unspecific antibacterials. However, the extremely wide use of these products requires alternative solutions with regard to various problems (environmental, respect of skin ecosystem, toxicity, etc.). For this reason, a MIP was developed to capture the glutamine conjugate precursors so that they are no longer available to the bacteria, thus preventing their transformation to malodorous compounds. In order to generate binding selectivity in aqueous environments, an amidinium-based monomer which can form a strong stoichiometric electrostatic interaction with the carboxyl groups on the template, was synthesized. The MIP, blended in a dermo-cosmetic formulation, could capture selectively the glutamine precursors, amidst a multitude of other molecules present in human sweat. Furthermore, the MIP did not affect the skin bacteria, paving the way to an innovative and 'safer ' future-generation deodorant. In the second part, we developed a fast and efficient procedure based on molecularly imprinted solid­ phase extraction (MISPE) for the selective clean-up of betanin and its stereoisomer isobetanin from red beetroot extracts. Betanin is a natural pigment with significant antioxidant and biological activities currently used as food colorant. Dipicolinic acid was used as template for the MIP synthesis, because of its structural similarity to the chromophore group of betanin The MISPE procedures were optimized allowing the almost complete removal of carbohydrates and the majority of proteins, resulting in high extraction recovery of betanin / isobetanin in a single step. Moreover, the whole extraction procedure was performed in environmentally friendly solvents with either ethanol or water. To conclude, we believe that this study paves the way towards the development of a new generation of water compatible MIPs with improved recognition properties in highly complex aqueous environments, and should be applicable to other biotechnological and biomedical areas as well.

Page generated in 0.0871 seconds