• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 92
  • 64
  • 20
  • 7
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 247
  • 247
  • 57
  • 54
  • 33
  • 31
  • 23
  • 22
  • 22
  • 21
  • 20
  • 19
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Host-pathogen interactions between Francisella tularensis and Drosophila melanogaster

Vonkavaara, Malin January 2012 (has links)
Francisella tularensis is a highly virulent Gram-negative bacterium causing the zoonotic disease tularemia. Arthropod-borne transmission plays an important role in transferring the disease to humans. F. tularensis induces very low amounts of pro-inflammatory cytokines during infection, due to inhibition of immune signaling pathways and an unusual structure of its lipopolysaccharide (LPS). To date, there is no vaccine available that is approved for public use, although an attenuated live vaccine strain (LVS) is commonly used as a model of the more infectious Francisella strains. To produce an effective vaccine it is important to understand the lifecycle of F. tularensis, including the interaction with the arthropod hosts. Drosophila melanogaster is a widely used model organism, which is increasingly being used in host-pathogen interaction studies as the immune pathways in flies are evolutionary conserved to the immune pathways in humans. An important part of the immune defense of D. melanogaster as well as of arthropods in general is the production of antimicrobial peptides. These peptides primarily target the bacterial membrane, inhibiting bacterial proliferation or directly killing the bacteria. The aim of this thesis was to establish D. melanogaster as a model for F. tularensis infection and as a model for arthropod vectors of F. tularensis. Also, to use D. melanogaster to further study the interaction between F. tularensis and arthropod vectors, with specific regard to the host immune signaling and arthropod antimicrobial peptides. F. tularensis LVS infects and kills D. melanogaster in a dose-dependent manner. During an infection, bacteria are found inside fly hemocytes, phagocytic blood cells, similar as in human infections. In mammals genes of the intracellular growth locus (igl) are important for virulence. In this work it is shown that the igl genes are also important for virulence in flies. These results demonstrate that D. melanogaster can be used as a model to study F. tularensis-host interactions. LVS induces a prolonged activation of several immune signaling pathways in the fly, but seem to interfere with the JNK signaling pathway, similarly as in mammals. Overexpression of the JNK pathway in flies has a protective effect on fly survival. Relish mutant flies, essentially lacking a production of antimicrobial peptides, succumb quickly to a F. tularensis infection, however, F. tularensis is relatively resistant to individual D. melanogaster antimicrobial peptides. Overexpressing antimicrobial peptide genes in wildtype flies has a protective effect on F. tularensis infection, suggesting that a combination of several antimicrobial peptides is necessary to control F. tularensis. The production of numerous antimicrobial peptides might be why D. melanogaster survives relatively long after infection. An intact structure of the lipid A and of the Kdo core of Francisella LPS is necessary for resistance to antimicrobial peptides and full virulence in flies. These results are similar to previous studies in mammals. In contrast to studies in mammals, genes affecting the O-antigen of F. tularensis LPS are not necessary for virulence in flies. In conclusion, this thesis work shows that D. melanogaster can be used as a model for studying F. tularensis-host interactions. LVS activates several immune pathways during infection, but interfere with the JNK pathway. Overexpressing the JNK pathway results in increased survival of flies infected with LVS. Despite rather high resistance to individual antimicrobial peptides, exposure to a combination of several D. melanogaster antimicrobial peptides reduces the virulence of F. tularensis.
12

Characterization of the Bovine Cathelicidin Gene Family

Flores, Erin Gillenwaters 2011 August 1900 (has links)
Cathelicidins (CATHLs) are small, cationic antimicrobial peptides that establish an early innate immune defense against infections in mammals. Beyond their wide spectrum of antimicrobial activity, these peptides play important roles in wound repair, chemotactic activity, and apoptosis. Thus, comprehensive characterizing of bovine CATHLs could potentially identify underlying inherited differences in innate immunity and disease resistance in cattle. The purpose of the present study was to verify the placement of the CATHL cluster at the distal end of bovine chromosome 22 (BTA22), identify any single nucleotide polymorphisms (SNPs) and insertion-deletion (indel) polymorphisms within the gene family, explore copy number variation, and investigate the functional impact any of these variants may have in overall bovine innate immunity. A framework radiation hybrid map was constructed with 7 markers screened against the bovine 12,000 rad whole genome RH (12K WG-RH) panel, which when compared to the current genome assembly (Btau_4.0) confirmed current gene order. Comparative sequence analysis for 10 domestic cattle breeds representing both Bos taurus taurus and Bos taurus indicus revealed 60 SNPs, 7 of which were nonsynonymous, and 5 indel mutations. Data from array comparative genomic hybridization (aCGH) between four Angus and four Nelore animals showed a 2-fold increase in copy number of the CATHL4 locus, which was verified by quantitative PCR (qPCR) of genomic DNA. Nelore animals showed an approximate 2-fold increase in the CATHL4 gene. Subsequently, the expression of CATHL4 in Nelore neutrophils exhibited a range of 2- to 5-fold increases in CATHL4 gene expression. Finally, a colorimetric bactericidal assay was performed on the neutrophils of the same Angus and Nelore animals previously genotyped for copy number variations (CNVs). After in vitro challenges to Staphylococcus aureus, Salmonella typhimurium, Mannheimia haemolytica, and Pasteurella multocida, the killing capacity of Nelore neutrophils was approximately 20 percent greater than Angus neutrophils for M. haemolytica and 10 percent greater for P. multocida. Characterization of this antimicrobial gene family is central to developing a firm understanding regarding the effects CATHL variation has with respect to bovine innate immunity.
13

In vivo efficacy of novel antibacterial and immunomodulatory peptides

Waldbrook, Matthew George 05 1900 (has links)
Despite the success of modern medicine in treating infections, infectious diseases remain a major source of morbidity and mortality worldwide. The evolution of antibiotic resistant strains of bacteria means that new innovations in therapeutics must be pursued to combat this emerging threat. A novel approach is to utilize the anti-infective properties of endogenous host defense peptides by creating smaller synthetic peptides with enhanced protective activities. Some of these peptides directly kill bacteria and many display varied immunomodulatory activities, enhancing the host innate immune response to more effectively clear an infection. Here I examined the efficacy of several synthetic peptides in a murine model of invasive bacterial infection, induced by the Gram positive bacterium Staphylococcus aureus. Several peptides were able to significantly reduce peritoneal bacterial load in vivo by up to 4-logs relative to the controls, either through direct antibacterial killing or immunomodulatory activity. The latter class was studied in more detail; in particular, the peptides IDR-1 and 1002 displayed significant immunomodulatory effects in vivo. Both peptides were able to significantly induce the proinflammatory chemokines MCP-1, RANTES and KC, as well as increased recruitment of neutrophils and monocytes to the site of infection. These effects were not dependent on live bacteria, as heat inactivated S. aureus was also able to induce chemokines and cell migration. Mice that had been depleted of macrophages did not respond to peptide treatment, indicating that macrophages are an important effector cells through which immunomodulatory peptides counter infections. These results suggest that synthetic peptides have the potential to become a viable treatment option for bacterial infections.
14

In vivo efficacy of novel antibacterial and immunomodulatory peptides

Waldbrook, Matthew George 05 1900 (has links)
Despite the success of modern medicine in treating infections, infectious diseases remain a major source of morbidity and mortality worldwide. The evolution of antibiotic resistant strains of bacteria means that new innovations in therapeutics must be pursued to combat this emerging threat. A novel approach is to utilize the anti-infective properties of endogenous host defense peptides by creating smaller synthetic peptides with enhanced protective activities. Some of these peptides directly kill bacteria and many display varied immunomodulatory activities, enhancing the host innate immune response to more effectively clear an infection. Here I examined the efficacy of several synthetic peptides in a murine model of invasive bacterial infection, induced by the Gram positive bacterium Staphylococcus aureus. Several peptides were able to significantly reduce peritoneal bacterial load in vivo by up to 4-logs relative to the controls, either through direct antibacterial killing or immunomodulatory activity. The latter class was studied in more detail; in particular, the peptides IDR-1 and 1002 displayed significant immunomodulatory effects in vivo. Both peptides were able to significantly induce the proinflammatory chemokines MCP-1, RANTES and KC, as well as increased recruitment of neutrophils and monocytes to the site of infection. These effects were not dependent on live bacteria, as heat inactivated S. aureus was also able to induce chemokines and cell migration. Mice that had been depleted of macrophages did not respond to peptide treatment, indicating that macrophages are an important effector cells through which immunomodulatory peptides counter infections. These results suggest that synthetic peptides have the potential to become a viable treatment option for bacterial infections.
15

Identification and development of novel antimicrobial peptides as alternatives to antibiotic growth promoters in poultry

Whenham, Natasha January 2015 (has links)
Poultry are vital to food security, with 60 billion chickens reared worldwide per annum and demand fast accelerating. For many years antibiotic growth promoters have been used to promote energy retention from the diet and control intestinal bacterial growth. Antibiotic use for prophylaxis or growth-promotion in farmed animals is prohibited under EU Directives due to human health concerns, but a pressing need exists to maintain the efficiency of animal production by finding alternatives. Antimicrobial peptides (AMPs), part of the innate immune system exist naturally in most species and could provide a vast array of potential therapeutics. Microbial resistance to AMPs is unlikely due to their relatively unspecific mode of action, their ability to target multiple sites within a cell and diverse immune-modulatory activities. The avian egg provides antimicrobial protection through many mechanisms including AMPs which are incorporated into the egg white by the hen. The ovodefensin family and ‘transiently expressed in neural precursors’ (TENP) have been identified as potential novel antimicrobials in egg white and therefore formed the basis of the peptide portfolio of this study. TENP was first identified as having a role in neurological development but has since been shown to be an important egg component constituting ~0.1-0.5% of the total protein. TENP is conserved across avian species being found in chicken, turkey, duck and zebra finch. Its homology with the bacterial permeability-increasing family of innate immune genes suggests it may contribute to antimicrobial function in the egg. This study confirmed that expression of TENP is confined to the albumen forming region of the oviduct in adult hens and is under gonadal steroid control, typical of an oviduct and egg specific gene. The ovodefensin family are β defensin related antimicrobial peptides thought to be restricted to the albumen producing region of the avian oviduct. This study identified twenty five novel ovodefensin members through genome analysis, expanding the ovodefensin family to include reptiles for the first time. Phylogenetic analysis showed a unique example of the evolution of a cysteine spacing motif alongside traditional sequence evolution. The expression of eight ovodefensins was shown to be oviduct specific supporting the hypothesis that ovodefensins evolved to protect the egg. Antimicrobial activity for three ovodefensins from chicken and duck was investigated against gram negative organisms E. coli and Salmonella including pathogenic strains as well as a gram positive organism, S. aureus, for the first time. The spectrum of activity varied greatly between peptides suggesting a link between structure and function. Inclusion of recombinant ovodefensin peptides in the feed of chickens showed beneficial effects on the gut microbiome, metabolite profile and most crucially an increase in mean body weight. This demonstrates the potential of antimicrobial peptides as alternatives to antibiotic growth promoters in poultry.
16

In vivo efficacy of novel antibacterial and immunomodulatory peptides

Waldbrook, Matthew George 05 1900 (has links)
Despite the success of modern medicine in treating infections, infectious diseases remain a major source of morbidity and mortality worldwide. The evolution of antibiotic resistant strains of bacteria means that new innovations in therapeutics must be pursued to combat this emerging threat. A novel approach is to utilize the anti-infective properties of endogenous host defense peptides by creating smaller synthetic peptides with enhanced protective activities. Some of these peptides directly kill bacteria and many display varied immunomodulatory activities, enhancing the host innate immune response to more effectively clear an infection. Here I examined the efficacy of several synthetic peptides in a murine model of invasive bacterial infection, induced by the Gram positive bacterium Staphylococcus aureus. Several peptides were able to significantly reduce peritoneal bacterial load in vivo by up to 4-logs relative to the controls, either through direct antibacterial killing or immunomodulatory activity. The latter class was studied in more detail; in particular, the peptides IDR-1 and 1002 displayed significant immunomodulatory effects in vivo. Both peptides were able to significantly induce the proinflammatory chemokines MCP-1, RANTES and KC, as well as increased recruitment of neutrophils and monocytes to the site of infection. These effects were not dependent on live bacteria, as heat inactivated S. aureus was also able to induce chemokines and cell migration. Mice that had been depleted of macrophages did not respond to peptide treatment, indicating that macrophages are an important effector cells through which immunomodulatory peptides counter infections. These results suggest that synthetic peptides have the potential to become a viable treatment option for bacterial infections. / Science, Faculty of / Microbiology and Immunology, Department of / Graduate
17

Advancing our understanding of lipid bilayer interactions : a molecular dynamics study

Carr, Matthew January 2016 (has links)
In recent years, advances in computer architecture and lipid force field parameters have made Molecular Dynamics (MD) a powerful tool for gaining atomistic resolution of biological membranes on timescales that other tools simply cannot explore. With many key biological processes involving membranes occurring on the nanosecond timescale, MD allows us to probe the dynamics and energetics of these interactions in molecular detail. Specifically, we can observe the interactions taking place as a peptide or protein comes into contact with a lipid bilayer, and how this may shape or alter the bilayer either locally (changes in headgroup orientation, lipid fluidity) or in bulk (lipid demixing, membrane curvature). The resolution achieved through atomistic MD can be directly compared with other tools such as NMR and EPR to gain a full perspective of how these biological systems behave over different timescales. As my background is in computational physics, this thesis not only looks into broadening our understanding of various interactions with biological membranes, but also into the development of construction and analytical software to assist in my research and benefit others in the field. One aspect of biological membranes that could vastly benefit from MD simulations is that of antimicrobial peptides (AMPs). These peptides primarily target and destroy microbes by permeabilising the cell membrane through a variety of proposed mechanisms, where each mechanism relies on the AMP to adopt specific conformations upon contact with bacterial membranes. In this thesis, I present an investigation into the interactions between a synthetic AMP and an inhibitor peptide designed to regulate antimicrobial activity through the formation of a coiled coil structure, which restricts the AMP from adopting new conformations. Simulations captured the spontaneous formation of coiled coils between these peptides, and specific residues in their sequences were identified that promote unfolding. This knowledge may lead to better design of coiled coil forming peptides. Another aspect of biological membranes that can be explored with MD is the interactions between model bacterial membranes and amphipathic helices, such as the MinD membrane targeting sequence (MinD-MTS). This 11-residue helix is responsible for anchoring the MinD protein to the inner membrane of Bacillus subtilis and plays a crucial role in bacterial cell division. MinD is known to exhibit sensitivity to transmembrane potentials (TMVs), whereby its localisation and binding affinity to bacterial membranes are disrupted upon removal of the TMV. Simulations revealed rapid insertions of MinD-MTS peptides into the headgroup region of a model bacterial membrane. Analytical software was constructed to measure the membrane properties of the lipids surrounding inserted MinDMTS peptides, which revealed splayed lipid tails and suggests the MinD-MTS may be capable of inducing membrane curvature. Additional simulations were conducted to investigate the influence of a TMV on model bacterial membranes, where software was constructed to measure changes in membrane properties. An analysis of these simulations suggests that a TMV is capable of lowering the transition temperature of a model bacterial membrane by a few degrees, yielding increased fluidity in the lipids and increased perturbations on the membrane surface. Finally, another aspect of biological membranes that can be explored through MD is that of electroporation. This induction of transient water pores in cell membrane provides an exciting aspect for drug delivery applications into cells, whereby electric fields are applied to cells to increase the uptake of therapeutic drugs. Simulations of membranes with high voltage TMVs were conducted that sought to investigate the implications of electroporation across a variety of bilayer compositions at different temperatures. Software was constructed to measure changes in membrane and system properties, which revealed that pore formation occurred at the same threshold voltage for different bilayer compositions in the fluid phase (~1.9 V) and a higher voltage for DPPC bilayers in the gel phase (~2.4 V). The TMV was found to be highly dependent on the area per lipid (APL), implying that bilayers with bulkier lipids or those transitioning from gel to fluid will experience smaller TMVs and fewer pore formations. These simulations also revealed lipid flip-flopping through pores, where charged lipids tended to translocate in the direction of the electric field to produce an asymmetrically charged bilayer. Finally, simulations utilising charged peptides with membranes yielded electroporation effects, whereby the charged peptides generate an identical TMV to those produced by an ion imbalance of equal magnitude. This suggests that charged peptides, such as AMPs, may be capable of permeabilising cell membranes through electroporation mechanisms.
18

Peptides against influenza: evaluating the anti-viral characteristics of regenerating Islet Derived Protein 3 and the cathelicidin LL-37

De Luna, Xavier Castillo 16 February 2021 (has links)
Antimicrobial peptides (AMPs) are innate host defense peptides that protect against pathogenic microbes by neutralizing toxins or via a direct killing mechanism. AMPs are classified based on their physical properties such as charge, structure, and binding motifs. Here we investigated the antimicrobial and immune-modulating effects of the Regenerating Islet-Derived Protein 3 (REG3) family and LL-37 REG3 peptides are C-type lectins and have been demonstrated to have antimicrobial activity against Gram-positive bacteria by binding to sugars on the peptidoglycan membrane of these bacteria. A similar strategy is also employed by the lectin Surfactant Protein-D which has been shown to bind and neutralize Influenza A Virus (IAV). REG3 peptides were shown to be expressed in the lungs of mice infected with IAV. We observed reduction of IAV infected cells when IAV was pre-incubated with an Escherichia coliexpressed recombinant version of human REG3A peptide. This peptide also modified interaction of IAV with primary human neutrophils. However, these effects were lost when using a mammalian cell expressed recombinant REG3A. A second member of the REG3 family, REG3G, showed minimal inhibition of IAV infection. While the mechanism remains unclear, LL-37 has demonstrated killing activity against a spectrum of microbes including IAV. Previous work from our group identified the core domain of LL-37 responsible for IAV neutralization. In addition, our group showed that LL-37 modulates interaction of IAV with neutrophils. Here we tested three modified versions of LL-37 that retain the overall size and charge of LL-37, but with modifications in the core domain reducing hydrophobicity. We observed that these mutants retain IAV killing activity across multiple strains. In addition, these mutants retain the modulation of IAV induced neutrophil responses. We also found that the compounds sodium butyrate and Entinostat, which can upregulate endogenous expression of LL-37, have variable effects in IAV infection. We believe these findings will aid in the development of LL-37 derivatives to expand the repertoire of antimicrobials.
19

Antifungal mode of action studies of an antimicrobial peptide, Os, in planktonic Candida albicans (ATCC 90028)

Moller, Dalton Sharl 07 1900 (has links)
Candida albicans is a fungus found in the normal biota of humans, but in immuno-compromised individuals, C. albicans forms complex biofilms on the surface of medical prosthetics, skin, oral cavities, the urinary tract, and other epithelial cell layers. Biofilms and the development of drug resistance has limited treatment options. Antimicrobial peptides (AMPs) are increasingly becoming attractive therapeutic agents for the treatment of these infections due to their multifunctional properties, multiple cellular targets, and the lower incidence of resistance development. Previous studies have shown that Os, an AMP derived from the tick defensin OsDef2, has antifungal activity against C. albicans. Preliminary antifungal mode of action studies indicated that Os induces the formation of reactive oxygen species although not a primary mode of killing. Os causes membrane permeabilization, which is inhibited by an excess of free laminarin and mannan. Furthermore, Os was shown to bind plasmid DNA but was inactive in high salt conditions. The aim of this study was to further explore the mode of action of Os in planktonic C. albicans (ATCC 90028) cells. A modified microbroth dilution assay was developed to allow rapid screening of salt sensitive AMPs such as Os. With this method the IC50 of the positive control, amphotericin B (AmpB), and Os were determined as 0.547 ± 0.056 μM and 1.163 ± 0.116 μM, respectively. The effects of AmpB and Os on cellular morphology were evaluated using scanning electron microscopy and transmission electron microscopy at their respective IC25, IC50 and IC75 values. When comparing the effects of Os with AmpB on the cell wall and membrane, Os had more severe and nonspecific effects. Os induced the formation of pits on the cell surface and pores in the cell membrane, as well as increased budding scars. Using isothermal titration calorimetry, no interaction between Os and the fungal cell wall components, mannan and laminarin, could be detected. Factors such as the lack of tryptophan and aspartate residues as well as β-sheet secondary structures may account for the lack of interaction. However, with the modified microbroth dilution assay in the presence of excess of mannan or laminarin (20 mg/mL), reduced activity from Os was observed. The formation of soluble macro-complexes between Os and the cell wall components at high concentrations may account for reduced activity. The ability of Os to cause membrane depolarization was evaluated with bis-(1,3-dibutylbarbituric acid) trimethine oxonol. The control, melittin, caused a linear increase in depolarization with a significant increase at 0.63 μM, while Os caused a sigmoidal increase in depolarization with a significant increase at 2.5 μM. Therefore, membrane depolarization occurs following membrane permeabilization which occurs at 2 μM. Finally, the localisation of 0.5 μM and 6.4 μM (IC25, IC75) 5-FAM-Os, and concurrently the effect on vacuoles loaded with CellTracker Blue-CMAC, was determined with flow cytometry and confocal laser scanning microscopy (CLSM). Findings were that Os, at a concentration below its IC50, binds to the cell membrane, then translocates and binds DNA. At a concentration above its IC50, Os accumulates in the cytoplasm and causes destruction of membranes, including that of vacuoles, leading to cell death. In conclusion, this study shows that Os is a membrane acting AMP that can be further developed for clinical application as an antifungal drug. / Dissertation (MSc (Biochemistry))--University of Pretoria, 2020 / NRF / Biochemistry / MSc (Biochemistry) / Unrestricted
20

Identification and Molecular validation of Biomarkers for the accurate and sensitive diagnosis of bacterial and viral Pneumonia

Bakare, Olalekan Olanrewaju January 2019 (has links)
Philosophiae Doctor - PhD / Pneumonia remains the major cause of death in children and the elderly and several efforts have been intensified to reduce the rate of pneumonia infection. The major breakthrough has been the discovery of certain biomarkers for the diagnosis of pneumonia through immunogenic techniques.

Page generated in 0.0665 seconds