• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Réseaux de diffraction et métamatériaux photoniques pour le contrôle de la lumière dans le visible et l’infrarouge / Diffraction gratings and photonic metamaterials to control the light at optical and infrared frequencies

Bruckner, Jean-Baptiste 17 March 2014 (has links)
Grâce aux récents progrès dans le domaine de la nanofabrication, la réalisation de structures photoniques a été rendue possible, permettant le contrôle de rayonnements lumineux utiles en tant que vecteurs d'informations ou pour la collecte de l'énergie. Ce manuscrit de thèse rassemble les études menées en collaboration avec Thalès Optronique sur deux démonstrateurs du projet ANR NPOEM, dont l'objectif est de réaliser des structures photoniques sur substrats souples par nanoimpression. Le premier démonstrateur consiste en un antireflet utilisant le domaine de résonance de réseaux de diffraction bipériodiques composés de motifs pyramidaux. Des réseaux de structures coniques à méplat lisse, structuré ou rugueux ont été modélisés par FDTD et RCWA, réalisées en collaboration avec le LTM et le CEA Liten, puis caractérisés à l'IM2NP. Les performances antireflets obtenues sont remarquables (réflectivité inférieure à 2% en incidence normale) et s'étendent sur une très large gamme spectrale du visible à l'infrarouge. Le second démonstrateur présente une fonction de filtrage de type passe-bas dans le visible et l'infrarouge. Une étude de plusieurs structures résonnantes de type métamatériaux (croix métalliques, empilement métal-diélectrique-métal, cônes métalliques et plaque métallique perforée) a montré les phénomènes de propagation singuliers liées aux petites dimensions (modes de bord, ondes de surface et couplages de proximité) et a conduit à la réalisation finale d'un filtre flexible et de large surface présentant les propriétés souhaitées. Les composants photoniques réalisés dans cette thèse trouvent leurs applications dans les domaines de la furtivité et du solaire thermique. / Thanks to recent advances in nanofabrication, the realization of photonic structures was possible, allowing the control of light as an information vector or for energy harvesting. This PhD thesis adresses the studies carried out in collaboration with Thales Optronics on two demonstrators for the ANR NPOEM research project, whose objective is to fabricate photonic structures on flexible substrates by nanoimprint technology. The first demonstrator consists of an antireflective coating using resonance phenomena within biperiodic diffraction gratings. Conical structures with flat, rough or patterned tops were modeled by FDTD and RCWA, carried out in collaboration with the CEA Liten LTM and then characterized at the IM2NP institute. The antireflective performances obtained are remarkable (reflection coefficient lower than 2 % at normal incidence) and extend over a wide spectral range from the visible to the infrared region. The second demonstrator presents a low-pass type filtering function at optical and infrared frequencies. A study of several resonant structures such as metamaterials (metallic crosses, metal-dielectric-metal stack, metallic cones and perforated plates) showed singular propagation phenomena related to small dimensions (modes, surface waves and proximity coupling) and led to the completion of a large surface, flexible filter demonstrating the desired properties. The photonic components made during this thesis have applications in the stealth and thermal solar domains.
2

Modélisation et Réalisation de Réseaux Sub-Longueur d'Onde :<br />Application au Contrôle de la Réflectivité Large Bande, Large Incidence.

Bouffaron, Renaud 12 December 2008 (has links) (PDF)
Les antireflets permettent d'accroître l'efficacité des cellules photovoltaïques, d'augmenter la sensibilité des détecteurs optroniques, et même d'améliorer l'extraction lumineuse des diodes électroluminescentes. Traditionnellement, des empilements de matériaux en couches minces sont utilisés pour les fabriquer. Nous avons étudié une technique alternative qui s'appuie sur la microstructuration de l'interface air-substrat. Il s'agit, plus précisément, de modéliser et de fabriquer des surfaces microstructurées bi-périodiques sur silicium et sur germanium présentant un effet antireflet très efficace dans l'infrarouge en bandes II et III respectivement. Ces structures nécessitent une description rigoureuse des phénomènes de propagation de la lumière. L'influence des paramètres opto-géométriques est examinée sous le point de vue des cristaux photoniques en utilisant les diagrammes de bandes. Pour réaliser ces structures, des techniques à bas coût, basées sur une gravure humide anisotrope du semi-conducteur cristallin à travers un masque obtenu par photolithographie, ont été utilisées. Nous obtenons expérimentalement sur silicium un facteur de réflexion inférieur à 4% sur l'ensemble du spectre IR II. Un très bon accord calcul/mesure permet de valider les résultats numériques obtenus précédemment.
3

Backside absorbing layer microscopy : a new tool for the investigation of 2D materials / Backside absorbing layer microscopy : un nouvel outil pour l'étude des matériaux 2D

Jaouen, Kévin 16 October 2019 (has links)
La microscopie optique sur substrats antireflets est un outil de caractérisation simple et puissant qui a notamment permis l'isolation du graphène en 2004. Depuis, le domaine d'étude des matériaux bidimensionnels (2D) s'est rapidement développé, tant au niveau fondamental qu'appliqué. Ces matériaux ultraminces présentent des inhomogénéités (bords, joints de grains, multicouches, etc.) qui impactent fortement leurs propriétés physiques et chimiques. Ainsi leur caractérisation à l'échelle locale est primordiale. Cette thèse s'intéresse à une technique récente de microscopie optique à fort contraste, nommée BALM, basée sur l'utilisation originale de couches antireflets très minces (2-5 nm) et fortement absorbantes (métalliques). Elle a notamment pour but d'évaluer les mérites de cette technique pour l'étude des matériaux 2D et de leur réactivité chimique. Ainsi, les différents leviers permettant d'améliorer les conditions d'observation des matériaux 2D ont tout d'abord été étudiés et optimisés pour deux matériaux modèles : l'oxyde de graphène et les monocouches de MoS₂. L'étude de la dynamique de dépôt de couches moléculaires a notamment permis de montrer à la fois l'extrême sensibilité de BALM pour ce type de mesures et l'apport significatif des multicouches antireflets pour l'augmentation du contraste lors de l'observation des matériaux 2D. L'un des atouts principaux de BALM venant de sa combinaison à d'autres techniques, nous nous sommes particulièrement intéressés au couplage de mesures optiques et électrochimiques pour lesquelles le revêtement antireflet sert d'électrode de travail. Nous avons ainsi pu étudier optiquement la dynamique de réduction électrochimique de l'oxyde de graphène (GO), l'électro-greffage de couches minces organiques par réduction de sels de diazonium sur le GO et sa forme réduite (r-GO), ainsi que l'intercalation d'ions métalliques entre feuillets de GO. En combinant versatilité et fort-contraste, BALM est ainsi établi comme un outil prometteur pour l'étude des matériaux 2D et en particulier pour la caractérisation locale et in situ de leur réactivité chimique et électrochimique. / Optical microscopy based on anti-reflective coatings is a simple yet powerful characterization tool which notably allowed the first observation of graphene in 2004. Since then, the field of two-dimensional (2D) materials has developed rapidly both at the fundamental and applied levels. These ultrathin materials present inhomogeneities (edges, grain boundaries, multilayers, etc.) which strongly impact their physical and chemical properties. Thus their local characterization is essential. This thesis focuses on a recent enhanced-contrast optical microscopy technique, named BALM, based on ultrathin (2-5 nm) and strongly light-absorbing (metallic) anti-reflective layers. The goal is notably to evaluate the benefits of this technique for the study of 2D materials and their chemical reactivity. The various levers to improve 2D materials observation were investigated and optimized for two model materials: graphene oxide and MoS₂ monolayers. The investigation of molecular layer deposition dynamic notably showed the extreme sensitivity of BALM for such measurements and the significant contribution of multilayers anti-reflective coatings to enhance contrast during the observation of 2D materials. One of the main assets of BALM comes from its combination to other techniques. We particularly considered the coupling between optical measurements and electrochemistry for which the anti-reflective layer serves as working electrode. We investigated optically the dynamic of electrochemical reduction of Graphene Oxide (GO), the electrografting of organic layers by diazonium salts reduction on GO and its reduced form (rGO), as well as the intercalation of metallic ions within GO sheets. By combining versatility and high-contrast, BALM is established as a promising tool for the study of 2D materials, especially for the local and in situ characterization of their chemical and electrochemical reactivity.

Page generated in 0.0331 seconds