Spelling suggestions: "subject:"antiviral mechanisms"" "subject:"ntiviral mechanisms""
1 |
Antiviral mechanisms of small molecules targeting the endoplasmic reticulum and Golgi apparatusHowe, Jonathon David January 2014 (has links)
N-linked glycosylation is the most common form of post-translational modification in nature and is essential to almost all enveloped viruses, including members of the Flaviviridae family. The host cell N-linked glycoprotein processing pathway is utilised by these viruses and as such has long been identified as a potential target for the development of antiviral drugs. Here, the antiviral mechanisms of three classes of small molecules targeting the secretory pathway and altering viral envelope glycosylation are investigated, using the HCV surrogate model, BVDV. The antiviral activity of imino sugars, principally through α-glucosidase inhibition, is well-characterised and here, a group of novel adamantyl coupled imino sugars are investigated and demonstrated to inhibit ER α glucosidases, which correlates with their antiviral activity against BVDV. Additionally, BVDV is used to study the antiviral mechanism of action of nitazoxanide. Nitazoxanide, the parent compound of the thiazolide class of structures, is a broadly antimicrobial compound with antiviral activity against HBV, HCV, influenza, JEV and others. Here, nitazoxanide is shown to be antiviral against BVDV by inducing Ca<sup>2+</sup> release from ATP-sensitive intracellular calcium stores, disrupting ER-Golgi trafficking and inhibiting complex glycan formation. Finally, the potential of Golgi endo-α-mannosidase as an antiviral target is explored, using the endomannosidase inhibitor glucose-isofagomine in conjunction with the imino sugar α-glucosidase inhibitor NAP-DNJ. Endomannosidase is shown to be a valid antiviral target for BVDV, both alone and in combination with α-glucosidase inhibition, and is utilised by viral glycoproteins to acquire complex glycan structure, even in the absence of α-glucosidase inhibition. Altogether, this work furthers our understanding of the varied antiviral mechanisms of small molecules targeting the secretory pathway, enhancing the search for novel antiviral drugs directed against host cell machinery.
|
2 |
Mécanismes et spécificité du priming immunitaire antiviral chez un Lophotrochozoaire, l'huitre creuse Crassostrea gigas. / Mechanisms and specificity of antiviral immune priming in a Lophtrochozoan, the Pacific oyster Crassostrea gigasLafont, Maxime 22 November 2017 (has links)
Depuis 2008, des épisodes de surmortalité massive d’origine multifactorielle, affectent mondialement les élevages de juvéniles d’huître creuse Crassostrea gigas dont le virus de type herpès, l’OsHV-1, peut être considéré comme un des agents pathogènes majeurs. L’immunité des huîtres, repose sur un système immunitaire inné et a longtemps été considéré comme peu spécifique et dépourvu de mémoire. Cependant, cette vision a été remise en question via des études ayant démontré l’existence d’une réponse immunitaire spécifique et mémoire chez des invertébrés. Dans le cadre de cette thèse, l’objectif était de caractériser le priming immunitaire antiviral ainsi que ses mécanismes chez l’huître face au virus OsHV-1. En stimulant les huîtres avec un agent mimétique viral, le poly(I:C), nos travaux ont montré que cette molécule protégeait spécifiquement contre l’OsHV-1 en milieu contrôlé et en milieu naturel sur le long terme, en améliorant le taux de survie des huîtres de près de 100%, mais pas d’infections bactériennes. Une approche RNA-seq nous a permis d’identifier différentes voies de signalisations immunitaires antivirales régulées suite à la stimulation par le poly(I:C). Les profils de régulation sont majoritairement maintenus dans le temps (au moins 10 jours), ce qui pourrait expliquer la protection observée. L’ensemble de ces résultats montre l’existence d’un phénomène de priming immunitaire antiviral efficace chez un Lophotrochozoaire et apporte une contribution à la compréhension des mécanismes moléculaires sous-jacents à ce phénomène. Ces travaux ont permis d’apporter des pistes de sortie de crise pour la filière ostréicole jusqu’alors inexplorées. / Since 2008, mass mortality events of multifactorial origin have affected the Pacific oyster Crassostrea gigas farms worldwide, in which a herpesvirus, the OsHV-1, can be considered as one of the major pathogens. The immunity of oysters, as for all invertebrates, is based on an innate immune system that has long been considered to be scarcely specific and to lack memory. However, in recent years this simplistic view has been questioned through studies that have demonstrated the existence of a specific immune response and memory. However, knowledge about the mechanisms underlying these phenomena still remains extremely fragmentary. The aim of this thesis was to characterize the antiviral immune priming and its mechanisms in the oyster against OsHV-1. By stimulating oysters with a viral mimic, poly(I:C), we have shown that this molecule specifically protects against OsHV-1 in controlled environment and in natural environment, protecting oysters from mass mortality events on the long term (min. 5 months) by improving oyster survival by almost 100% but does not protect against bacterial infection. A RNA-seq approach carried out during this thesis allowed us to identify different antiviral immune pathways regulated following the stimulation by poly(I:C). The regulation profiles are mostly maintained over time (at least 10 days), which could explain the observed protection. All these results show the existence of an effective antiviral immune priming phenomenon in a Lophotrochozoan and contribute to the understanding of the molecular mechanisms underlying this phenomenon. This work opens new perspectives hitherto unexplored to support oyster farming against this crisis.
|
Page generated in 0.0659 seconds