• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mitral Valvar Prolapse and Regurgitation Combined With Aortic Regurgitation in a Child With Sanfilippo Syndrome Type A

Alturjuman, Ahmad, Mehta, Ashok V. 01 January 1998 (has links)
Cardiovascular involvement is commonly reported in various muco- polysaccharidoses. We report a first case of Sanfilippo syndrome type A in a 12-year-old white female who has developed combined progressive mitral valvar regurgitation due to prolapse and aortic regurgitation.
2

A modified Park's stitch to correct aortic insufficiency for bioprosthetic valve at time of left ventricular assist device implant: a case report

Kazui, Toshinobu, Sydow, Nicole, Friedman, Mark, Kim, Samuel, Lick, Scott, Khalpey, Zain 30 November 2016 (has links)
Background: Aortic valve insufficiency (AI) at the time of left ventricular assist device (LVAD) insertion needs to be corrected, however there is little known about how to manage bioprosthetic valvular AI. Case presentation: A 55-year-old female with dilated cardiomyopathy who previously had a bioprosthetic aortic valve replacement needed a LVAD as a bridge to transplant. Her left ventricular ejection fraction was 10% and had mild to moderate transvalvular AI. She underwent a HeartWare HVAD insertion along with aortic valvular coaptation stitch repair (Park's stitch) to the bioprosthetic valve. Conclusion: Her AI improved to trivial with minimal ejection through the bioprosthetic valve. She was transplanted 6 months following the surgery. A Park's stitch to the bioprosthetic aortic valve with more than mild AI might be a good option for bridge to transplant patient.
3

Leaflet Material Selection for Aortic Valve Repair

Abessi, Ovais 21 November 2013 (has links)
Leaflet replacement in aortic valve repair (AVr) is associated with increased long-term repair failure. Hemodynamic performance and mechanical stress levels were investigated after porcine AVr with 5 types of clinically relevant replacement materials to ascertain which material(s) would be best suited for repair. Porcine aortic roots with intact aortic valves were placed in a left-heart simulator mounted with a high-speed camera for baseline valve assessment. Then, the non-coronary leaflet was excised and replaced with autologous porcine pericardium (APP), glutaraldehyde-fixed bovine pericardial patch (BPP; Synovis™), extracellular matrix scaffold (CorMatrix™), or collagen-impregnated Dacron (HEMASHIELD™). Hemodynamic parameters were measured over a range of cardiac outputs (2.5–6.5L/min) post-repair. Material properties of the above materials along with St. Jude Medical™ Pericardial Patch with EnCapTM Technology (SJM) were determined using pressurization experiments. Finite element models of the aortic valve and root complex were then constructed to verify the hemodynamic characteristics and determine leaflet stress levels. This study demonstrates that APP and SJM have the closest profiles to normal aortic valves; therefore, use of either replacement material may be best suited. Increased stresses found in BPP, HEMASHIELD™, and CorMatrix™ groups may be associated with late repair failure.
4

Leaflet Material Selection for Aortic Valve Repair

Abessi, Ovais January 2013 (has links)
Leaflet replacement in aortic valve repair (AVr) is associated with increased long-term repair failure. Hemodynamic performance and mechanical stress levels were investigated after porcine AVr with 5 types of clinically relevant replacement materials to ascertain which material(s) would be best suited for repair. Porcine aortic roots with intact aortic valves were placed in a left-heart simulator mounted with a high-speed camera for baseline valve assessment. Then, the non-coronary leaflet was excised and replaced with autologous porcine pericardium (APP), glutaraldehyde-fixed bovine pericardial patch (BPP; Synovis™), extracellular matrix scaffold (CorMatrix™), or collagen-impregnated Dacron (HEMASHIELD™). Hemodynamic parameters were measured over a range of cardiac outputs (2.5–6.5L/min) post-repair. Material properties of the above materials along with St. Jude Medical™ Pericardial Patch with EnCapTM Technology (SJM) were determined using pressurization experiments. Finite element models of the aortic valve and root complex were then constructed to verify the hemodynamic characteristics and determine leaflet stress levels. This study demonstrates that APP and SJM have the closest profiles to normal aortic valves; therefore, use of either replacement material may be best suited. Increased stresses found in BPP, HEMASHIELD™, and CorMatrix™ groups may be associated with late repair failure.

Page generated in 0.0606 seconds