• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 15
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Impact of Vitamin C on Genistein-Induced Apoptosis in Prostate Cancer

Unknown Date (has links)
This study determined the impact of vitamin C dose on genistein-induced apoptosis in LNCaP cancer cells at various treatment regimens in vitro. Although the linear regression of viability assay (MTT) indicated a p-value = 0.11; NBT assay reveal a declining SOD activity during cell death. Apoptosis induction was the main mode of treatment induced cell death. The overall data showed the trend of treatment efficacy as;(Gen 10uM + Vit C 40uM) > (Gen 30uM + Vit C 40uM) > (Gen 70uM + Vit C 40uM) > 10uM genistein > 70uM genistein. The chi-square test for comparing necrosis, apoptosis and life cells showed that Vitamin C could impact genistein-induced apoptosis in LNCaP cells (p = 0.0003). This study forms the basis for in vivo studies of the impact of vitamin C on genistein-induced apoptosis in LNCaP prostate cancer cells. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection
12

Enhancement of the Chemopreventive and Chemotherapeutic Effects of Genistein and Beta-lapachone in Human Prostate Cancer Cells by Pyroelectrically Generated Very Low Dose Ionizing Radiation

Unknown Date (has links)
An estimated 220,800 new prostate cancer cases and 27,540 deaths are expected to occur in US men by the end of 2015. Despite the increased treatment modes for prostate cancer, there is still no definite cure, and prognosis remains, at best, cautiously optimistic. The explicit amalgamation of two or more cancer therapeutic modalities such as surgery, radiation, and chemotherapy, has been one of the main interests of clinical investigation for several decades. Genistein (GN) and Beta-lapachone (BL) are two of the most promising anticancer phytochemical compounds. However, the anticancer activities of BL have been correlated with the enzyme activity of NQO1. The aim of this study was to investigate the enhancing effects of VLDR derived from a portable pyroelectric crystal generator on the chemopreventive and/or chemotherapeutic effects of GN and BL in NQO1+ PC3 and NQO1± (deficient) LNCaP prostate cancer cells (PCa) in vitro. The combination treat ment-induced cytotoxicity was investigated via MTT and Trypan blue exclusion assays. Dicoumarol (an NQO1 inhibitor) was co-administered to assess the effect of VLDR on NQO1 modulation. Nitro-blue tetrazolium assay was used to assess the intracellular ROS levels. Fluorescence microscopy was also used to assess the mode of cell death. In this study, a novel quantitative modeling approach was employed to comparably assess the cytotoxic effects of specific drugs used alone or in combinations with VLDR and to predict the potential synergistic therapeutic combinations. The data suggests that VLDR induced a rise in ROS levels, followed by upregulation in NQO1 levels. Pharmacodynamic indices were developed to quantify and characterize the combination treatment as synergistic, additive or antagonistic per dose or time-interval. Synergism was found to be dose and time-interval dependent. The major mode of cell death by this combination therapeutic regimen was found to be via apoptosis . In conclusion, our results confirm that VLDR enhanced cytotoxicity effects of both drugs dose- and time-dependently. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection
13

The expression and function of secreted frizzled-related protein 4 in human serous ovarian carcinoma

Drake, Jeremy January 2007 (has links)
[Truncated abstract] Ovarian cancer is currently the leading cause of death from gynaecological malignancies in women from developed countries. Serous ovarian cancer is the most prevalent type of all ovarian cancers, with the majority diagnosed in an advanced stage where treatment efficacy is reduced and patient survival is poor. Because of this fact, the development of improved detection and treatment strategies are necessary, with much research focussing on the complex molecular pathways involved in ovarian tumour growth as one potential avenue for intervention. Apoptosis, or programmed cell death, is one such area of investigation because currently successful cancer treatments induce apoptosis in tumour cells. Molecular analysis of apoptosis in both normal tissue and tumours has established a positive relationship between increased expression of secreted frizzled-related protein 4 (SFRP4) and apoptosis, however to date, very little research has focussed on the role of this gene in the ovary . . . An examination of SFRP4 and β-catenin expression in 163 primary serous ovarian carcinomas revealed high SFRP4 expression was associated with low β-catenin expression and conversely, low SFRP4 was associated with high β-catenin expression in the majority of the ovarian tumours analysed, reinforcing the inverse relationship observed in the ovarian cell lines. A positive trend was observed between cancer stage and the expression level of these proteins, with increased SFRP4 expression and reduced β-catenin expression as cancer stage increased. Additionally, patient survival revealed a trend towards increased survival among ovarian cancer patients who had tumours expressing low levels of SFRP4. Taken together, the novel findings of this study indicate that the increased expression of SFRP4 observed in a large proportion of serous ovarian cancers is a cellular response to down-regulate the level of β-catenin, and thus an attempt to maintain cellular homeostasis by counteracting the excessive proliferating signals present in these tumour cells.
14

Anticancer ativities of topotecan-genistein combination in prostate cancer cells

Unknown Date (has links)
Prostate cancer is one of the leading causes of death in men aged 40-55. Genistein isoflavone (4', 5', 7-trihydroxyisoflavone) is a dietary phytochemical with demonstrated anti-tumor activities in a variety of cancers. Topotecan Hydrochloride (Hycamtin) is an FDA-approved chemotherapy drug, primarily used for secondary treatment of ovarian,cervical and small cell lung cancers. This study was to demonstrate the potential anticancer activities and synergy of topotecan-genistein combination in LNCaP prostate cancer cells. The potential efficacy and mechanism of topotecan/genistein-induced cell death was investigated... Results: The overall data indicated that i) both genistein and topotecan induce cellular death in LNCaP cells, ii) topotecan-genistein combination was significantly more efficacious in reducing LNCaP cell viabiligy compared to either genistein or topotecan alone, iii) in all cases, cell death was primarily through apoptosis, via the activation of the intrinsic pathway, iv) ROS levels were increased and VEGF expression was diminished significantly with the topotecan-genistein combination treatment, v) genetic analysis of topotecan-genistein treatment groups showed changes in genetic expression levels in pathway specific apoptotic genes.... Conclusion: Treatments involving topotecan-genistein combination may prove to be an attractive alternative phytotherapy of adjuvant therapy for prostate cancer. / by Vanessa P. Hèormann. / Thesis (Ph.D.)--Florida Atlantic University, 2012. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
15

The inhibition of mammary epithelial cell growth by the long isoform of Angiomotin

Adler, Jacob J. 07 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Mammary ductal epithelial cell growth is controlled by microenvironmental signals in serum under both normal physiological settings and during breast cancer progression. Importantly, the effects of several of these microenvironmental signals are mediated by the activities of the tumor suppressor protein kinases of the Hippo pathway. Canonically, Hippo protein kinases inhibit cellular growth through the phosphorylation and inactivation of the oncogenic transcriptional co-activator Yes-Associated Protein (YAP). This study defines an alternative mechanism whereby Hippo protein kinases induce growth arrest via the phosphorylation of the long isoform of Angiomotin (Amot130). Specifically, serum starvation is found to activate the Hippo protein kinase, Large Tumor Suppressor (LATS), which phosphorylates the adapter protein Amot130 at serine-175. Importantly, wild-type Amot130 potently inhibits mammary epithelial cell growth, unlike the Amot130 serine-175 to alanine mutant, which cannot be phosphorylated at this residue. The growth-arrested phenotype of Amot130 is likely a result of its mechanistic response to LATS signaling. Specifically, LATS activity promotes the association of Amot130 with the ubiquitin ligase Atrophin-1 Interacting Protein 4 (AIP4). As a consequence, the Amot130-AIP4 complex amplifies LATS tumor suppressive signaling by stabilizing LATS protein steady state levels via preventing AIP4-targeted degradation of LATS. Additionally, AIP4 binding to Amot130 leads to the ubiquitination and stabilization of Amot130. In turn, the Amot130-AIP4 complex signals the ubiquitination and degradation of YAP. This inhibition of YAP activity by Amot130 requires both AIP4 and the ability of Amot130 to be phosphorylated by LATS. Together, these findings significantly modify the current view that the phosphorylation of YAP by Hippo protein kinases is sufficient for YAP inhibition and cellular growth arrest. Based upon these results, the inhibition of cellular growth in the absence of serum more accurately involves the stabilization of Amot130 and LATS, which together inhibit YAP activity and mammary epithelial cell growth.

Page generated in 0.0468 seconds