• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Age and Origin of the Merrimack Terrane, Southeastern New England: A Detrital Zircon U-Pb Geochronology Study

Sorota, Kristin Joy January 2013 (has links)
Thesis advisor: J C. Hepburn / Thesis advisor: Yvette D. Kuiper / Metasedimentary rocks of the Merrimack terrane (MT) originated as a thick cover sequence on Ganderia consisting of sandstones, calcareous sandstones, pelitic rocks and turbidites. In order to investigate the age, provenance and stratigraphic order of these rocks and correlations with adjoining terranes, detrital zircon suites from 7 formations across the MT along a NNE-trending transect from east-central Massachusetts to SE New Hampshire were analyzed by U-Pb LA-ICP-MS methods on 90-140 grains per sample. The youngest detrital zircons in the western units, the Worcester, Oakdale and Paxton Formations, are ca. 438 Ma while those in the Kittery, Eliot and Berwick Formations in the northeast are ca. 426 Ma. The Tower Hill Formation previously interpreted to form the easternmost unit of the MT in MA, has a distinctly different zircon distribution with its youngest zircon population in the Cambrian. All samples except for the Tower Hill Formation have detrital zircon age distributions with significant peaks in the mid-to late Ordovician, similar abundances of early Paleozoic and late Neoproterozoic zircons, significant input from ~1.0 to ~1.8 Ga sources and limited Archean grains. The similarities in zircon provenance suggest that all units across the terrane, except for the Tower Hill Formation, belong to a single sequence of rocks, with similar sources and with the units in the NE possibly being somewhat younger than those in east-central Massachusetts. The continuous zircon age distributions observed throughout the Mesoproterozoic and late Paleoproterozoic are consistent with an Amazonian source. All samples, except the Tower Hill Formation, show sedimentary input from both Ganderian and Laurentian sources and suggest that Laurentian input increases as the maximum depositional age decreases. / Thesis (MS) — Boston College, 2013. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Geology and Geophysics.
2

New constraints on the late Cenozoic incision history of the New River, Virginia

Ward, Dylan J. 12 July 2004 (has links)
The New River crosses the core of the ancient, tectonically quiescent Appalachian orogen as it follows its course through North Carolina, Virginia, and West Virginia. It is ideally situated to record the changes in geomorphic process rates that occur in the Appalachians as a response to late Cenozoic climate variations. Active erosion features on resistant bedrock that floors the river at prominent knickpoints demonstrate that the river is currently incising toward base level. However, large packages of alluvial fill and fluvial terraces cut into this fill record an incision history for the river that includes several periods of stalled downcutting and aggradation. Cosmogenic 10-Be exposure dating, aided by mapping and sedimentological examination of terrace deposits, is used to constrain the timing of events in this history. Fill-cut and strath terraces at elevations 10, 20, and 50 m above the modern river yield cosmogenic exposure ages of approximately 130, 610, and 955 ka, respectively, but uncertainties on these ages are not well-constrained. This translates to a long-term average incision rate of 43 m/my, which is comparable to rates measured elsewhere in the Appalachians. During specific intervals over the last 1 Ma, however, the New River's incision rate reached 97 m/my. Fluctuations between aggradation and rapid incision appear to be related to late Cenozoic climate variations, though uncertainties in modeled ages preclude direct correlation of these fluctuations to specific climate change events. Erosion rates on higher alluvial deposits adjacent to the river are estimated from 10-Be concentrations; these rates are very low, about 2 m/my or less. This demonstrates a disequilibrium in the modern landscape, with river incision greatly outpacing erosion from nearby landforms. / Master of Science
3

Fluid History of the Western Maryland Piedmont

LaFonte, Christopher John 27 July 2015 (has links)
No description available.
4

Carbon cycle changes during the end-Marjuman (Cambrian) extinction in the Southern Appalachians

Gerhardt, Angela Mae 16 May 2014 (has links)
The late Cambrian-early Ordovician transition contains several trilobite extinctions. The first of these extinctions (the end-Marjuman) is thought to coincide with the Steptoean Positive Carbon Isotope Excursion or SPICE, a large and rapid excursion in the marine carbon isotope record. This excursion, which is expressed in sedimentary successions globally, is thought to represent a large perturbation to the carbon cycle during this time. Additionally, a limited amount of carbon isotope data from the Deadwood Formation in the Black Hills of South Dakota suggests the possibility of a small negative ẟ¹³C excursion near the extinction and preceding the SPICE. Previous high-resolution biostratigraphy has identified an expanded record of extinction event within the Nolichucky Formation of the Southern Appalachians making it an excellent candidate for the study of the precise relationship between the extinction and changes in the carbon cycle. This investigation confirms the onset of the SPICE occurs at the extinction boundary however no negative ẟ¹³C excursion occurs at the extinction boundary. Further there is no systematic relationship between local facies changes and ẟ¹³C or the extinction interval across the basin, which suggests that global environmental changes were responsible for both the ẟ¹³C record and the extinction event. / Master of Science
5

Deformation and Fluid History of Late Proterozoic and Early Cambrian Rocks of the Central Appalachian Blue Ridge

Chandonais, Daniel 23 July 2012 (has links)
No description available.

Page generated in 0.0383 seconds