Spelling suggestions: "subject:"apprentissage bayésienne"" "subject:"dapprentissage bayésienne""
1 |
Mesure de la dynamique des polluants gazeux en air intérieur : évaluation des performances de systèmes multi-capteurs / Measuring the dynamics of gaseous pollutants in indoor air : evaluation of the performances of multi-sensor devicesCaron, Alexandre 14 December 2016 (has links)
La qualité de l’air intérieur constitue de nos jours un enjeu sanitaire majeur ainsi qu’une problématique de recherche enplein essor. De nombreux polluants sont présents à l’intérieur des bâtiments. Ils sont directement émis par des sourcesintérieures telles que les matériaux de constructions, le mobilier, l’activité des occupants ou proviennent de l’airextérieur. La politique de réduction de la consommation énergétique entraîne la construction de bâtiments de plus enplus hermétiques, réduisant ainsi l’élimination des polluants par transfert vers l’extérieur. Les techniques d’analysesclassiques ne sont pas adaptées à la surveillance continue de ces environnements. Il s’agit généralement d’analyseursencombrants, coûteux, bruyants et qui nécessitent du personnel qualifié. Une alternative à ces méthodes est récemmentapparue sous la forme de capteurs miniatures. Dans ce travail de thèse, les performances et limitations de plusieurscapteurs miniatures, tels que des capteurs à infrarouge, électrochimiques, à photoionisation ou semi-conducteurs pourla mesure du CO2, du CO, des NOx, d’O3 et des COV, ont été évaluées en laboratoire et lors de campagnes de mesurespour le suivi des principaux polluants de l’air intérieur. Bien que la réponse de ces capteurs soit fortement corrélée avecla concentration mesurée par des analyseurs de référence, le manque de sélectivité ne permet pas toujours une analysequantitative. L’apprentissage bayésien naïf ainsi que le clustering par bisecting k-means ont permis d’interpréter lessignaux mesurés par les capteurs et de mettre en évidence des événements typiques de pollution, traduisant ladynamique de la qualité de l’air intérieur. / Nowadays, indoor air quality is a major health issue and a growing research challenge. Many pollutants are presentinside buildings. They are directly emitted by indoor sources such as building materials, furniture, occupants and theiractivities or transferred from outdoors. Due to an increasing concern for energy saving, recent buildings are much moreairtight, reducing the pollutants elimination to the outside. Standard analyzers are not suitable for monitoring the airquality indoors. These techniques are usually bulky, expensive, noisy and require skilled people. An alternative to theseconventional methods recently appeared under the form of microsensors. In this work, the performances and limitationsof different type of sensors such as infrared sensors, electrochemical sensors, photoionisation detectors orsemiconductive sensors for the measurement of CO2, CO, NOx, O3 or VOC, were evaluated in laboratory conditions andalso during measurement campaigns in order to monitor the major indoor air pollutants. Although the response of thesesensors is highly correlated with the concentration measured by reference instruments, their lack of selectivity does notalways allow a quantitative analysis. Naive Bayes classifier and bisecting k-means clustering were used to help analyzethe output of the sensors, and allow identifying typical pollution events, reflecting the dynamics of the indoor air quality.
|
2 |
Statistical physics of disordered networks - Spin Glasses on hierarchical lattices and community inference on random graphsDecelle, Aurélien 11 October 2011 (has links) (PDF)
Cette thèse aborde des aspects fondamentales et appliquées de la théorie des verres de spin etplus généralement des systèmes complexes. Les premiers modèles théoriques décrivant la transitionvitreuse sont apparues dans les années 1970. Ceux-ci décrivaient les verres à l'aide d'interactionsaléatoires. Il a fallu alors plusieurs années avant qu'une théorie de champs moyen pour ces systèmessoient comprises. De nos jours il existe un grand nombre de modèles tombant dans la classe de" champs moyen " et qui sont bien compris à la fois analytiquement, mais également numériquementgrâce à des outils tels que le monte-carlo ou la méthode de la cavité. Par ailleurs il est bien connu quele groupe de renormalisation a échoué jusque ici à pouvoir prédire le comportement des observablescritiques dans les verres hors champs moyen. Nous avons donc choisi d'étudier des systèmes eninteraction à longue portée dont on ignore encore si la physique est identique à celle du champmoyen. Nous avons montré dans une première partie, la facilité avec laquelle on peut décrire unetransformation du groupe de renormalisation dans les systèmes ferromagnétiques en interaction àlongue portée dé finies sur le réseau hiérarchique de Dyson. Dans un second temps, nous avons portéenotre attention sur des modèles de verre de spin sur ce même réseau. Un début d'analyse sur cestransformations dans l'espace réel est présenté ainsi qu'une comparaison de la mesure de l'exposantcritique nu par différentes méthodes. Si la transformation décrite semble prometteuse il faut cependantnoter que celle-ci doit encore être améliorée afin d'être considérée comme une méthode valide pournotre système. Nous avons continué dans cette même direction en analysant un modèle d'énergiesaléatoires toujours en utilisant la topologie du réseau hiérarchique. Nous avons étudié numériquementce système dans lequel nous avons pu observer l'existence d'une transition de phase de type " criseentropique " tout à fait similaire à celle du REM de Derrida. Toutefois, notre modèle présente desdifférences importantes avec ce dernier telles que le comportement non-analytique de l'entropie à latransition, ainsi que l'émergence de " criticalité " dont la présence serait à confirmer par d'autres études.Nous montrons également à l'aide de notre méthode numérique comment la température critique dece système peut-être estimée de trois façon différentes.Dans une dernière partie nous avons abordé des problèmes liés aux systèmes complexes. Il aété remarqué récemment que les modèles étudiés dans divers domaines, par exemple la physique, labiologie ou l'informatique, étaient très proches les uns des autres. Ceci est particulièrement vrai dansl'optimisation combinatoire qui a en partie été étudiée par des méthodes de physique statistique. Cesméthodes issues de la théories des verres de spin et des verres structuraux ont été très utilisées pourétudier les transitions de phase qui ont lieux dans ces systèmes ainsi que pour inventer de nouveauxalgorithmes pour ces modèles. Nous avons étudié le problème de l'inférence de modules dans lesréseaux à l'aide de ces même méthodes. Nous présentons une analyse sur la détection des modules topologiques dans des réseaux aléatoires et démontrons la présence d'une transition de phase entre une région où ces modules sont indétectables et une région où ils sont détectables. Par ailleurs, nous avons implémenté pour ces problèmes un algorithme utilisant Belief Propagation afin d'inférer les modules ainsi que d'apprendre leurs propriétés en ayant pour unique information la structure du réseau. Finalementnous avons appliqué cet algorithme sur des réseaux construits à partir de données réelles et discutonsles développements à apporter à notre méthode.
|
3 |
Fondations, méthode et applications de l'apprentissage bayésien.Dangauthier, Pierre-Charles 18 December 2007 (has links) (PDF)
Le domaine de l'apprentissage automatique a pour but la création d'agents synthétiques améliorant leurs performances avec l'expérience. Pour pouvoir se perfectionner, ces agents extraient des régularités statistiques de données incertaines et mettent à jour leur modèle du monde. Les probabilités bayésiennes sont un outil rationnel pour répondre à la problématique de l'apprentissage. Cependant, comme ce problème est souvent difficile, des solutions proposant un compromis entre précision et rapidité doivent être mises en oeuvre. Ce travail présente la méthode d'apprentissage bayésien, ses fondations philosophiques et plusieurs applications innovantes. Nous nous intéressons d'abord à des questions d'apprentissage de paramètres. Dans ce cadre nous étudions deux problèmes d'analyse de données à variables cachées. Nous proposons d'abord une méthode bayésienne pour classer les joueurs d'échecs qui améliore sensiblement le système Elo. Le classement produit permet de répondre à des questions intéressantes comme celle de savoir qui fut le meilleur joueur d'échecs de tous les temps. Nous étudions aussi un système de filtrage collaboratif dont le but est de prévoir les goûts cinématographiques d'utilisateurs en fonction de leurs préférences passées. La deuxième partie de notre travail concerne l'apprentissage de modèles. D'abord nous nous intéressons à la sélection de variables pertinentes dans le cadre d'une application robotique. D'un point de vue cognitif, cette sélection permet au robot de transférer ses connaissances d'un domaine sensorimoteur vers un autre. Finalement, nous proposons une méthode permettant de découvrir automatiquement une nouvelle variable cachée afin de mieux modéliser l'environnement d'un robot.
|
4 |
Statistical physics of disordered networks - Spin Glasses on hierarchical lattices and community inference on random graphs / Physique statistique des réseaux désordonnées - Verres de spin sur réseaux hiérarchique et inférence de modules dans les graphes aléatoiresDecelle, Aurélien 11 October 2011 (has links)
Cette thèse aborde des aspects fondamentales et appliquées de la théorie des verres de spin etplus généralement des systèmes complexes. Les premiers modèles théoriques décrivant la transitionvitreuse sont apparues dans les années 1970. Ceux-ci décrivaient les verres à l'aide d'interactionsaléatoires. Il a fallu alors plusieurs années avant qu'une théorie de champs moyen pour ces systèmessoient comprises. De nos jours il existe un grand nombre de modèles tombant dans la classe de« champs moyen » et qui sont bien compris à la fois analytiquement, mais également numériquementgrâce à des outils tels que le monte-carlo ou la méthode de la cavité. Par ailleurs il est bien connu quele groupe de renormalisation a échoué jusque ici à pouvoir prédire le comportement des observablescritiques dans les verres hors champs moyen. Nous avons donc choisi d'étudier des systèmes eninteraction à longue portée dont on ignore encore si la physique est identique à celle du champmoyen. Nous avons montré dans une première partie, la facilité avec laquelle on peut décrire unetransformation du groupe de renormalisation dans les systèmes ferromagnétiques en interaction àlongue portée dé finies sur le réseau hiérarchique de Dyson. Dans un second temps, nous avons portéenotre attention sur des modèles de verre de spin sur ce même réseau. Un début d'analyse sur cestransformations dans l'espace réel est présenté ainsi qu'une comparaison de la mesure de l'exposantcritique nu par différentes méthodes. Si la transformation décrite semble prometteuse il faut cependantnoter que celle-ci doit encore être améliorée afin d'être considérée comme une méthode valide pournotre système. Nous avons continué dans cette même direction en analysant un modèle d'énergiesaléatoires toujours en utilisant la topologie du réseau hiérarchique. Nous avons étudié numériquementce système dans lequel nous avons pu observer l'existence d'une transition de phase de type « criseentropique » tout à fait similaire à celle du REM de Derrida. Toutefois, notre modèle présente desdifférences importantes avec ce dernier telles que le comportement non-analytique de l'entropie à latransition, ainsi que l'émergence de « criticalité » dont la présence serait à confirmer par d'autres études.Nous montrons également à l'aide de notre méthode numérique comment la température critique dece système peut-être estimée de trois façon différentes.Dans une dernière partie nous avons abordé des problèmes liés aux systèmes complexes. Il aété remarqué récemment que les modèles étudiés dans divers domaines, par exemple la physique, labiologie ou l'informatique, étaient très proches les uns des autres. Ceci est particulièrement vrai dansl'optimisation combinatoire qui a en partie été étudiée par des méthodes de physique statistique. Cesméthodes issues de la théories des verres de spin et des verres structuraux ont été très utilisées pourétudier les transitions de phase qui ont lieux dans ces systèmes ainsi que pour inventer de nouveauxalgorithmes pour ces modèles. Nous avons étudié le problème de l'inférence de modules dans lesréseaux à l'aide de ces même méthodes. Nous présentons une analyse sur la détection des modules topologiques dans des réseaux aléatoires et démontrons la présence d'une transition de phase entre une région où ces modules sont indétectables et une région où ils sont détectables. Par ailleurs, nous avons implémenté pour ces problèmes un algorithme utilisant Belief Propagation afin d'inférer les modules ainsi que d'apprendre leurs propriétés en ayant pour unique information la structure du réseau. Finalementnous avons appliqué cet algorithme sur des réseaux construits à partir de données réelles et discutonsles développements à apporter à notre méthode. / This thesis presents fundamental and applied aspects of spin glasses theory and complex systems. The first theoretical models of spin glasses appeared during the 1970. They were modelling glassy systems by using random interactions. It took several years before a mean-field theory of spin glasses was solved and understood. Nowadays there exists many different models falling in the class of mean-field models. They are well-understood analytically but also numerically where many methods exist to analyse them, namely the monte-carlo and the cavity method which are now essential numerical tools to investigate spin glass. At the same time, the renormalisation group technique which has been very useful in the past to analyse second order transition failed in many disordered systems to predict the behaviour of critical observables in non-mean-field spin glasses. We have chosen to study long-range interacting systems in which we don't know if the physics is identical to mean-field models. In a first part, we studied a ferromagnetic model on the Dyson hierarchical lattice. In this system with long-range interaction, we showed that it is easy to find a real-space transformation of the renormalisation group to compute the critical exponents. In a second part we focused on a spin glass model built on the same lattice. We made a first study where a real-space transformation is described for this system and we compare the estimations of the critical exponent nu for this model by different methods. The renormalisation group transformation gives some encouraging results but needs to be improved to become a more reliable method in this system. We have then investigated a model of random energies by using the same hierarchical topology. We studied numerically this system where we observed the existence of a phase transition of the same type as the one present in the REM of Derrida. However our model exhibits many different features compare to the REM. We found a non-analytical behaviour of the entropy at the transition and critical properties such as a diverging length-scale should occur according to our results. This last prediction has to be studied by a more direct measurement. By the numerical method we developed, we estimated the critical temperature using three different observables, all giving the same value. In the last part I turned to problems related to complex systems. It has been noticed recently that models of different fields such as physics, biology or computer science were very close to each other. This is particularly true in combinatorial optimisation problem which has been investigated using method of statistical physics. These techniques coming from the field of spin glasses and structural glasses were used to studied phase transitions in such systems and to invent new algorithms. We studied the problem of inference and learning of modular structure in random graphs by these techniques. We analysed the presence of topological clusters in some particular types of random graphs, and we showed that a phase transition occurred between a region where it is possible to detect clusters and a region where it is impossible. We also implemented a new algorithm using Belief Propagation to learn the properties of these clusters and to infer them in networks. We applied this algorithm to real-graph and discussed further development of this problem.
|
Page generated in 0.0854 seconds