• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Codage neural parcimonieux pour un système de vision / Sparse Neural coding for a Vision System

Huet, Romain 19 June 2017 (has links)
Les réseaux de neurones ont connu un vif regain d’intérêt avec le paradigme de l'apprentissageprofond ou deep learning. Alors que les réseaux dits optimisés, de par l'optimisation des paramètres nécessaires pour réaliser un apprentissage, nécessitent de fortes ressources de calcul, nous nous focalisons ici sur des réseaux de neurones dont l'architecture consiste en une mémoire au contenu adressable, appelées mémoires associatives neuronales. Le défi consiste à permettre la réalisation d'opérations traditionnellement obtenues par des calculs en s'appuyant exclusivement sur des mémoires, afin de limiter le besoin en ressources de calcul. Dans cette thèse, nous étudions une mémoire associative à base de clique, dont le codage neuronal parcimonieux optimise la diversité des données codées dans le réseau. Cette grande diversité permet au réseau à clique d'être plus performant que les autres mémoires associatives dans la récupération des messages stockés en mémoire. Les mémoires associatives sont connues pour leur incapacité à identifier sans ambiguïté les messages qu'elles ont préalablement appris. En effet, en fonction de l'information présente dans le réseau et de son codage, une mémoire peut échouer à retrouver le résultat recherché. Nous nous intéressons à cette problématique et proposons plusieurs contributions afin de réduire les ambiguïtés dans le réseau. Ces réseaux à clique sont en outre incapables de récupérer une information au sein de leurs mémoires si le message à retrouver est inconnu. Nous proposons une réponse à ce problème en introduisant une nouvelle mémoire associative à base de clique qui conserve la capacité correctrice du modèle initial tout en étant capable de hiérarchiser les informations. La hiérarchie s'appuie sur une transformation surjective bidirectionnelle permettant de généraliser une entrée inconnue à l'aide d'une approximation d'informations apprises. La validation expérimentale des mémoires associatives est le plus souvent réalisée sur des données artificielles de faibles dimensions. Dans le contexte de la vision par ordinateur, nous présentons ici les résultats obtenus avec des jeux de données plus réalistes etreprésentatifs de la littérature, tels que MNIST, Yale ou CIFAR. / The neural networks have gained a renewed interest through the deep learning paradigm. Whilethe so called optimised neural nets, by optimising the parameters necessary for learning, require massive computational resources, we focus here on neural nets designed as addressable content memories, or neural associative memories. The challenge consists in realising operations, traditionally obtained through computation, exclusively with neural memory in order to limit the need in computational resources. In this thesis, we study an associative memory based on cliques, whose sparse neural coding optimises the data diversity encoded in the network. This large diversity allows the clique based network to be more efficient in messages retrieval from its memory than other neural associative memories. The associative memories are known for their incapacity to identify without ambiguities the messages stored in a saturated memory. Indeed, depending of the information present in the network and its encoding, a memory can fail to retrieve a desired result. We are interested in tackle this issue and propose several contributions in order to reduce the ambiguities in the cliques based neural network. Besides, these cliques based nets are unable to retrieve an information within their memories if the message is unknown. We propose a solution to this problem through a new associative memory based on cliques which preserves the initial network's corrective ability while being able to hierarchise the information. The hierarchy relies on a surjective and bidirectional transition to generalise an unknown input with an approximation of learnt information. The associative memories' experimental validation is usually based on low dimension artificial dataset. In the computer vision context, we report here the results obtained with real datasets used in the state-of-the-art, such as MNIST, Yale or CIFAR.
2

Reconstruction de réseaux fonctionnels et analyse causale en biologie des systèmes / Network reconstruction and causal analysis in systems biology

Affeldt, Séverine 02 July 2015 (has links)
L'inférence de la causalité est une problématique récurrente pour un large éventail de domaines où les méthodes d'interventions ou d'acquisition de données temporelles sont inapplicables. Toutefois, établir des relations de causalité uniquement à partir de données d'observation peut se révéler être une tâche complexe. Je présente ici une méthode d'apprentissage de réseaux qui combine les avantages des méthodes d'inférence par identification de contraintes structurales et par optimisation de scores bayésiens pour reconstruire de manière robuste des réseaux causaux malgré le bruit d'échantillonnage inhérent aux données d'observation. Cette méthode repose sur l'identification de v-structures à l'aide de l'information (conditionnelle) à trois variables, une mesure issue de la théorie de l'information, qui est négative quand elle est associée à un collider et positive sinon. Cette approche soustrait itérativement l'information conditionnelle à trois variables la plus forte à l'information conditionnelle à deux variables entre chaque paire de noeuds. Les indépendences conditionnelles sont progressivement calculées en collectant les contributions les plus fortes. Le squelette est ensuite partiellement orienté et ces orientations sont propagées aux liens non orientés selon le signe et la force de l'interaction dans les triplets ouverts. Cette approche obtient de meilleurs résultats que les méthodes par contraintes ou optimisation de score sur un ensemble de réseaux benchmark et fournit des prédictions prometteuses pour des systèmes biologiques complexes, tels que les réseaux neuronaux du poisson zèbre ou l'inférence des cascades de mutations dans les tumeurs. / The inference of causality is an everyday life question that spans a broad range of domains for which interventions or time-series acquisition may be impracticable if not unethical. Yet, elucidating causal relationships in real-life complex systems can be convoluted when relying solely on observational data. I report here a novel network reconstruction method, which combines constraint-based and Bayesian frameworks to reliably reconstruct networks despite inherent sampling noise in finite observational datasets. The approach is based on an information theory result tracing back the existence of colliders in graphical models to negative conditional 3-point information between observed variables. This enables to confidently ascertain structural independencies in causal graphs, based on the ranking of their most likely contributing nodes with (significantly) positive conditional 3-point information. Dispensible edges from a complete undirected graph are progressively pruned by iteratively taking off the most likely positive conditional 3-point information from the 2-point (mutual) information between each pair of nodes. The resulting skeleton is then partially directed by orienting and propagating edge directions based on the sign and magnitude of the conditional 3-point information of unshielded triples. This new approach outperforms constraint-based and Bayesian inference methods on a range of benchmark networks and provides promising predictions when applied to the reconstruction of complex biological systems, such as hematopoietic regulatory subnetworks, zebrafish neural networks, mutational pathways or the interplay of genomic properties on the evolution of vertebrates.

Page generated in 0.0936 seconds