Spelling suggestions: "subject:"apprentissage multicibles"" "subject:"apprentissage multivaribles""
1 |
Apprentissage multi-cibles : théorie et applications / Multi-output learning : theory and applications.Moura, Simon 17 December 2018 (has links)
Cette thèse traite du problème de l'apprentissage automatique supervisé dans le cas ou l'on considère plusieurs sorties, potentiellement de différent types. Nous proposons d'explorer trois différents axes de recherche en rapport avec ce sujet. Dans un premier temps, nous nous concentrons sur le cas homogène et proposons un cadre théorique pour étudier la consistance des problèmes multi-labels dans le cas de l'utilisation de chaîne de classifieurs. Ensuite, en nous plaçant dans ce cadre, nous proposons une borne de Rademacher sur l'erreur de généralisation pour tous les classifieurs de la chaîne et exposons deux facteurs de dépendance reliant les sorties les unes aux autres. Dans un deuxième temps, nous développons et analysons la performance de modèles en lien avec la théorie proposée. Toujours dans le cadre de l'apprentissage avec plusieurs sorties homogènes, nous proposons un modèle basé sur des réseaux de neurones pour l'analyse de sentiments à grain fin. Enfin, nous proposons un cadre et une étude empirique qui montrent la pertinence de l'apprentissage multi-objectif dans le cas de multiples sorties hétérogènes. / In this thesis, we study the problem of learning with multiple outputs related to different tasks, such as classification and ranking. In this line of research, we explored three different axes. First we proposed a theoretical framework that can be used to show the consistency of multi-label learning in the case of classifier chains, where outputs are homogeneous. Based on this framework, we proposed Rademacher generalization error bound made by any classifier in the chain and exhibit dependency factors relating each output to the others. As a result, we introduced multiple strategies to learn classifier chains and select an order for the chain. Still focusing on the homogeneous multi-output framework, we proposed a neural network based solution for fine-grained sentiment analysis and show the efficiency of the approach. Finally, we proposed a framework and an empirical study showing the interest of learning with multiple tasks, even when the outputs are of different types.
|
2 |
Systèmes de recommandation pour la publicité en ligne / Recommendation systems for online advertisingSidana, Sumit 08 November 2018 (has links)
Cette thèse est consacrée à l’étude des systèmes de recommandation basés sur des réseaux de neurones artificiels appris pour faire de l'ordonnancement de produits avec des retours implicites (sous forme de clics). Dans ce sens, nous proposons un nouveau modèle neuronal qui apprend conjointement la représentation des utilisateurs et des produits dans un espace latent, ainsi que la relation de préférence des utilisateurs sur les produits. Nous montrons que le modèle proposé est apprenable au sens du principe de la minimisation du risque empirique et performant par rapport aux autres modèles de l'état de l'art sur plusieurs collections. En outre, nous contribuons à la création de deux nouvelles collections, produites grâce aux enregistrements des comportements de clients de Kelkoo (https://www.kelkoo.com/); le leader européen de la publicité programmatique et de Purch (http://www.purch.com/). Les deux jeux de données recueillent des retours implicites des utilisateurs sur des produits, ainsi qu’un grand nombre d'informations contextuelles concernant à la fois les clients et les produits. La collections de données de Purch contient en plus une information sur la popularité des produits ainsi que des commentaires textuelles associés. Nous proposons, une stratégie simple et efficace sur la manière de prendre en compte le biais de la popularité ainsi qu'un modèle probabiliste latent temporel pour extraire automatiquement les thèmes des textes des commentaires.Mots clés. Systèmes de recommandation, apprentissage d'ordonnancement, réseaux de neurones, recommandations avec des retours implicites, Modèles probabilistes latents temporels / This thesis is dedicated to the study of Recommendation Systems for implicit feedback (clicks) mostly using Learning-to-rank and neural network based approaches. In this line, we derive a novel Neural-Network model that jointly learns a new representation of users and items in an embedded space as well as the preference relation of users over the pairs of items and give theoretical analysis. In addition we contribute to the creation of two novel, publicly available, collections for recommendations that record the behavior of customers of European Leaders in eCommerce advertising, Kelkoofootnote{url{https://www.kelkoo.com/}} and Purchfootnote{label{purch}url{http://www.purch.com/}}. Both datasets gather implicit feedback, in form of clicks, of users, along with a rich set of contextual features regarding both customers and offers. Purch's dataset, is affected by popularity bias. Therefore, we propose a simple yet effective strategy on how to overcome the popularity bias introduced while designing an efficient and scalable recommendation algorithm by introducing diversity based on an appropriate representation of items. Further, this collection contains contextual information about offers in form of text. We make use of this textual information in novel time-aware topic models and show the use of topics as contextual information in Factorization Machines that improves performance. In this vein and in conjunction with a detailed description of the datasets, we show the performance of six state-of-the-art recommender models.Keywords. Recommendation Systems, Data Sets, Learning-to-Rank, Neural Network, Popularity Bias, Diverse Recommendations, Contextual information, Topic Model.
|
Page generated in 0.0545 seconds