Spelling suggestions: "subject:"apprentissage procédurale"" "subject:"apprentissage procédure""
1 |
L’apprentissage de procédures médicales par vidéo : effets de la segmentation et du contrôle du rythme par l’apprenant / Learning medical procedures by video : effects of segmentation and pacingBiard, Nicolas 11 January 2019 (has links)
Les vidéos sont de plus en plus utilisées dans l’enseignement. C’est également le cas dans la formation médicale et paramédicale et, entre autres, dans l’apprentissage de procédures qui seront à réaliser de manière différée. Malgré l’intérêt pédagogique qu’elles offrent aux apprenants, leur utilisation peut entrainer des difficultés spécifiques dans le processus d’apprentissage des utilisateurs en raison de la nature transitoire des informations fournies. Pour limiter la surcharge cognitive que cela peut engendrer, il est possible de laisser le contrôle du rythme de la vidéo à l’apprenant, avec un bouton pause sur l’interface du lecteur par exemple. Cependant, les modèles mentaux des apprenants novices peuvent ne pas être suffisamment pertinents pour savoir à quel moment de la procédure arrêter la vidéo. Ainsi, l’introduction d’une segmentation, avec des pauses imposées par le système à chaque étape de la procédure, peut s’avérer plus efficace lors d’un apprentissage d’une compétence clinique. Ces modalités de présentation de l’information ont été étudiées sous l’angle de la théorie de la charge cognitive et de la théorie cognitive de l’apprentissage multimédia. Une série d’études est menée afin de déterminer la manière dont il est préférable de présenter l’information délivrée par les vidéos pour faciliter son apprentissage. Nous avons tout d’abord vérifié que l’association de la segmentation au contrôle du rythme par l’apprenant améliore la qualité de l’apprentissage (expé. 1) et que cet effet positif était bien lié à la segmentation et non au temps d’exposition au matériel pédagogique (expé. 2) ou à la durée des pauses imposées (expé. 3). Enfin, deux autres modalités, permettant d’optimiser encore l’apprentissage, ont été testées. Alors que l’indiçage verbal n’a pas amélioré l’apprentissage (expé. 4), nous avons pu montrer qu’une incitation à faire des pauses lors de la consigne avait un effet positif sur les comportements des apprenants et sur la qualité de l’apprentissage (expé. 5). Les résultats de ces études sont discutés et des perspectives proposées. / Videos are increasingly being used in education. This is also the case in medical and paramedical training and, among other things, in the learning of procedures that will have to be carried out later. Their use can lead to specific difficulties in term of users’ learning processes, owing to the transient nature of the information that is delivered. To cope with potential cognitive overload, learner controls can be provided (e.g., pause button), but novice users’mental models may not be sufficiently relevant for them to know when to halt the video. Thus, the introduction of segmentation, with breaks imposed by the system at each step of the procedure, may be more effective when learning a clinical skill. These information presentation modalities were studied from the perspective of the cognitive load theory and the cognitive theory of multimedia learning. A series of studies is being conducted to determine how it is best to present the information provided by the videos to facilitate learning. We first verified that the combination of segmentation and pacing improves the quality of learning (exp 1) and that this positive effect was related to segmentation and not to the time of exposure to the teaching material (exp 2) or the duration of the imposed breaks (exp 3). Finally, two other modalities, to further optimize learning, were tested. While signaling did not improve learning (exp 4), we were able to show that an incentive to pause during the instruction had a positive effect on learners' behaviors and on the quality of their learning (exp 5). The results of these studies are discussed and perspectives proposed.
|
2 |
Striatum mosaic disassembling: shedding light on striatal neuronal type functions by selective ablation in genetic models/Etude du rôle de populations neuronales du striatum par ablation sélective dans des modèles murins transgéniques.Durieux, Pierre PF 25 May 2010 (has links)
The striatum represents the main input nucleus of the basal ganglia, a system of subcortical nuclei critically involved into motor control and motivational processes and altered in several conditions such as Parkinson’s diseases or drug addiction. The projection neurons of the striatum are GABAergic (γ-aminobutyric acid) medium-sized spiny neurons (MSNs), and account for the large majority of striatal neurons, while interneurons represent about 10% of striatal cells. The MSNs are subdivided into two subpopulations that form two main efferent pathways: the striatonigral and striatopallidal neurons. The striatonigral MSNs project to the entopeduncular nucleus (EP) and substancia nigra pars reticulata (SNr) (direct pathway) and co-express dopamine D1 receptors (D1R) and substance P neuropeptide (SP). On the other hand, striatopallidal MSNs project to the lateral globus pallidus (LGP) (indirect pathway) and co-express dopamine D2 receptor (D2R), adenosine A2A receptor (A2AR) and enkephalin (Enk). The D1R striatonigral and D2R striatopallidal MSNs are equal in number and shape and are mosaically distributed through all the striatum. The dorsal striatum is mainly involved in motor control and learning while the ventral striatum is crucial for motivational processes. In view of the still debating respective functions of projection D2R-striatopallidal and D1R-striatonigral neurons and striatal interneurons, both in motor control and learning of skills and habits but also in more cognitive processes such as motivation, we were interested in the development of models allowing the removal of selective striatum neuronal populations in adult animal brain. Because of the mosaical organisation of the striatum, a targeting of specific neuronal type, with techniques such as chemical lesions or surgery, is still impossible. Taking advantage of new transgenic approaches, the goal of the present work was to generate and/or to initiate the characterization of genetic models in which a selective subtype of striatal neuron can be ablated in an inducible way. We used a transgenic approach in which mice express a monkey diphtheria toxin (DT) receptor (DTR) in D2R-striatopallidal or D1R-striatonigral neurons. Local stereotactic injections of DT can then induce selective neuronal ablation in functionally different striatal areas.
We first investigated functions of D2R-striatopallidal neurons in motor control and drug reinforcement by their selective ablation in the entire striatum or restricted to the ventral striatum. This DTR strategy produced selective D2R striatopallidal MSN ablation with integrity of the other striatal neurons as well as the striatal dopaminergic function. D2R MSN ablation in the entire striatum induced permanent hyperlocomotion while ventral striatum-restricted ablation increased amphetamine place preference.
We next compared respective roles of D2R-striatopallidal and D1R-striatonigral neurons in motor control and skill learning in functionally different striatum subregions.
Finally, to target nitrergic interneurons of the striatum, we developed a bacterial artificial chromosome genetic strain in which the cre-recombinase expression is under the control of the neuronal nitric oxide gene promoter.
Altogether, those results show that DTR expression and DT local injections is an efficient and flexible strategy to ablate selective striatum neuronal types with spatial resolution. We provide the first direct experimental evidences that D2R striatopallidal neurons inhibit both locomotor and drug-reinforcement processes and that D2R and D1R MSNs in different striatum subregions have distinct functions in motor control and motor skill learning. Those results strongly support a cell-type and topographic functional organization of the striatum and underscore the need for characterization of the specific cellular and molecular modifications that are induced in D2R and D1R MSNs during drug-reinforcement or procedural learning.
|
3 |
Approche inter-syndromique des processus cognitifs en jeu dans la déficience intellectuelle et la dyspraxie verbale : vitesse de traitement de l’information, mémoire de travail et apprentissage procéduralBussy, Gérald 07 October 2010 (has links)
Notre but de comprendre les mécanismes constitutifs de la déficience intellectuelle et de la dyspraxie verbale, deux pathologies qui affectent les performances aux tests psychométriques. Nous avons sélectionné plusieurs processus pouvant contribuer à l’explication de ces troubles : la vitesse de traitement de l’information et la mémoire travail pour la déficience intellectuelle ; et l’apprentissage procédural pour la dyspraxie verbale. Dans une première étude, nous avons montré que dans la population « tout venant » d’enfants non déficients, la vitesse de traitement augmente avec l’âge. Notre seconde expérience a montré que des patients déficients intellectuels avaient la même vitesse de traitement que des enfants plus jeunes appariés sur l’âge mental. Par ailleurs, nous avons montré que ce ralentissement est similaire dans le syndrome de l’X-Fragile et dans la Trisomie 21. Inversement, la vitesse de traitement des enfants dyspraxiques verbaux est préservée. Ces résultats viennent discuter les deux modèles théoriques de l’intelligence que nous avons choisis comme référence, le modèle en cascade de Fry & Hale (1996) et le modèle d’Anderson (1992). Dans le second volet de nos recherches, nous avons mis en évidence un apprentissage procédural implicite comparable dans deux groupes d’enfants d’âges chronologiques différents malgré des temps de réaction plus importants chez les plus jeunes. La seconde étude montre une préservation de l’apprentissage procédural implicite dans le syndrome de l’X-Fragile et une altération spécifique dans la Trisomie 21. Cela démontre que ce processus est indépendant du QI et varie selon les syndromes. Notre dernière étude montre un trouble important de l’apprentissage procédural implicite dans la dyspraxie verbale, confortant notre hypothèse de départ. L’ensemble de ces résultats est discuté au regard des travaux antérieurs et des modèles théoriques afin de proposer des ouvertures tant théoriques que cliniques. / Our aim is to understand previous process in mental retardation and childhood apraxia of speech (CAS). There are both neurodevelopmental disorders which affect psychometric assessment. We have selected several processes which could explain these disorders such has speed of information processing, working memory for mental retardation and implicit procedural learning for childhood apraxia of speech. In our first study, we have demonstrated within two groups of typical children without disorders that speed of processing increased with chronological age. In the second study, our results have demonstrated the same speed of processing between a group with mental retardation and with mental age matched control group. Moreover, Down and Fragile X syndrome have the same speed of information processing. On the contrary, in our third study, children with CAS and chronological age matched control group have the same speed as process visual information. All results are important to discuss both theories of intelligence we have chosen: the cascade model (Fry and Hall, 1990) and the minimal cognitive architecture (Anderson, 1992). In the second experimental part, our first results have shown a different reaction time between the two groups of young children but both have learned the sequence in a serial reaction time task (implicit procedural learning test). The second study have demonstrated preserved implicit learning in Fragile X but altered learning in Down syndrome. The difference between to these two genetics syndromes is a proof of implicit sequence learning is independent of IQ. The latest results have shown severe implicit procedural learning impairment in CAS. We conclude that this is the cause of CAS.Our discussion is about all results and links between intelligence and disorders with regard to previous studies. Those results aim for both theorical and clinical openings.
|
4 |
Striatum mosaic disassembling: shedding light on striatal neuronal type functions by selective ablation in genetic models / Etude du rôle de populations neuronales du striatum par ablation sélective dans des modèles murins transgéniquesDurieux, Pierre 25 May 2010 (has links)
The striatum represents the main input nucleus of the basal ganglia, a system of subcortical nuclei critically involved into motor control and motivational processes and altered in several conditions such as Parkinson’s diseases or drug addiction. The projection neurons of the striatum are GABAergic (γ-aminobutyric acid) medium-sized spiny neurons (MSNs), and account for the large majority of striatal neurons, while interneurons represent about 10% of striatal cells. The MSNs are subdivided into two subpopulations that form two main efferent pathways: the striatonigral and striatopallidal neurons. The striatonigral MSNs project to the entopeduncular nucleus (EP) and substancia nigra pars reticulata (SNr) (direct pathway) and co-express dopamine D1 receptors (D1R) and substance P neuropeptide (SP). On the other hand, striatopallidal MSNs project to the lateral globus pallidus (LGP) (indirect pathway) and co-express dopamine D2 receptor (D2R), adenosine A2A receptor (A2AR) and enkephalin (Enk). The D1R striatonigral and D2R striatopallidal MSNs are equal in number and shape and are mosaically distributed through all the striatum. The dorsal striatum is mainly involved in motor control and learning while the ventral striatum is crucial for motivational processes. In view of the still debating respective functions of projection D2R-striatopallidal and D1R-striatonigral neurons and striatal interneurons, both in motor control and learning of skills and habits but also in more cognitive processes such as motivation, we were interested in the development of models allowing the removal of selective striatum neuronal populations in adult animal brain. Because of the mosaical organisation of the striatum, a targeting of specific neuronal type, with techniques such as chemical lesions or surgery, is still impossible. Taking advantage of new transgenic approaches, the goal of the present work was to generate and/or to initiate the characterization of genetic models in which a selective subtype of striatal neuron can be ablated in an inducible way. We used a transgenic approach in which mice express a monkey diphtheria toxin (DT) receptor (DTR) in D2R-striatopallidal or D1R-striatonigral neurons. Local stereotactic injections of DT can then induce selective neuronal ablation in functionally different striatal areas.<p>We first investigated functions of D2R-striatopallidal neurons in motor control and drug reinforcement by their selective ablation in the entire striatum or restricted to the ventral striatum. This DTR strategy produced selective D2R striatopallidal MSN ablation with integrity of the other striatal neurons as well as the striatal dopaminergic function. D2R MSN ablation in the entire striatum induced permanent hyperlocomotion while ventral striatum-restricted ablation increased amphetamine place preference.<p>We next compared respective roles of D2R-striatopallidal and D1R-striatonigral neurons in motor control and skill learning in functionally different striatum subregions.<p>Finally, to target nitrergic interneurons of the striatum, we developed a bacterial artificial chromosome genetic strain in which the cre-recombinase expression is under the control of the neuronal nitric oxide gene promoter.<p><p>Altogether, those results show that DTR expression and DT local injections is an efficient and flexible strategy to ablate selective striatum neuronal types with spatial resolution. We provide the first direct experimental evidences that D2R striatopallidal neurons inhibit both locomotor and drug-reinforcement processes and that D2R and D1R MSNs in different striatum subregions have distinct functions in motor control and motor skill learning. Those results strongly support a cell-type and topographic functional organization of the striatum and underscore the need for characterization of the specific cellular and molecular modifications that are induced in D2R and D1R MSNs during drug-reinforcement or procedural learning.<p> / Doctorat en Sciences médicales / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0724 seconds