• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 145
  • 28
  • 17
  • Tagged with
  • 212
  • 212
  • 186
  • 184
  • 120
  • 96
  • 94
  • 94
  • 82
  • 79
  • 79
  • 75
  • 75
  • 74
  • 72
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Réseaux de neurones à convolutions pour la segmentation multi structures d'images par résonance magnétique cardiaque

Zotti, Clément January 2018 (has links)
L'imagerie par résonance magnétique (IRM) est une technique d'acquisition d'images qui permet de visualiser les différents tissus du corps humain. Son principe se base sur le moment magnétique des protons des atomes d'hydrogène. Le corps étant principalement composé d'eau et donc d'hydrogène, cela en fait une méthode de choix pour faire de l'imagerie cardiaque. L'IRM est très utilisée en clinique pour observer et diagnostiquer les différentes maladies cardiaques, comme l'infarctus du myocarde, la cardiomyopathie dilatée ou la cardiomyopathie hypertrophique. Dans le cas du coeur, principalement trois structures anatomiques sont étudiées: la cavité du ventricule gauche, la cavité du ventricule droit et le myocarde. Dans ce but, il est nécessaire de faire une segmentation manuelle, semi-automatique ou automatique de l'image IRM. Une fois ces structures segmentées, différents paramètres physiologiques peuvent être calculés pour évaluer la maladie d'un patient. Souvent, les méthodes de segmentation se concentrent sur la segmentation de la cavité du ventricule gauche. Pour les autres structures, la segmentation est principalement faite à la main par un médecin ce qui demande un temps non négligeable (environ 10 à 15 minutes par coeur). Ce mémoire présente une base de données anonymisée d'images cardiaque contenant 150 patients avec différentes maladies cardiaques. Il présente aussi une nouvelle méthode de segmentation automatique des trois structures sans aucune intervention humaine. La méthode se base sur l'apprentissage profond, ce qui en fait une méthode très rapide (180 millisecondes par volume). Pour rendre les segmentations plus fidèles, elle incorpore un terme de contours qui permet d'avoir une segmentation plus précise des contours des structures et une forme a priori qui permet de rendre la segmentation plus près de celle d'un vrai coeur (sans trous ou anatomie impossible). Cette recherche est faite en collaboration avec l'Université de Bourgogne et l'Université de Lyon en France qui ont permis la mise en place de cette base de données cardiaque et la validation des résultats.
12

Deep learning for image compression / Apprentissage profond pour la compression d'image

Dumas, Thierry 07 June 2019 (has links)
Ces vingt dernières années, la quantité d’images et de vidéos transmises a augmenté significativement, ce qui est principalement lié à l’essor de Facebook et Netflix. Même si les capacités de transmission s’améliorent, ce nombre croissant d’images et de vidéos transmises exige des méthodes de compression plus efficaces. Cette thèse a pour but d’améliorer par l’apprentissage deux composants clés des standards modernes de compression d’image, à savoir la transformée et la prédiction intra. Plus précisément, des réseaux de neurones profonds sont employés car ils ont un grand pouvoir d’approximation, ce qui est nécessaire pour apprendre une approximation fidèle d’une transformée optimale (ou d’un filtre de prédiction intra optimal) appliqué à des pixels d’image. En ce qui concerne l’apprentissage d’une transformée pour la compression d’image via des réseaux de neurones, un défi est d’apprendre une transformée unique qui est efficace en termes de compromis débit-distorsion, à différents débits. C’est pourquoi deux approches sont proposées pour relever ce défi. Dans la première approche, l’architecture du réseau de neurones impose une contrainte de parcimonie sur les coefficients transformés. Le niveau de parcimonie offre un contrôle sur le taux de compression. Afin d’adapter la transformée à différents taux de compression, le niveau de parcimonie est stochastique pendant la phase d’apprentissage. Dans la deuxième approche, l’efficacité en termes de compromis débit-distorsion est obtenue en minimisant une fonction de débit-distorsion pendant la phase d’apprentissage. Pendant la phase de test, les pas de quantification sont progressivement agrandis selon un schéma afin de compresser à différents débits avec une unique transformée apprise. Concernant l’apprentissage d’un filtre de prédiction intra pour la compression d’image via des réseaux de neurones, le problème est d’obtenir un filtre appris qui s’adapte à la taille du bloc d’image à prédire, à l’information manquante dans le contexte de prédiction et au bruit de quantification variable dans ce contexte. Un ensemble de réseaux de neurones est conçu et entraîné de façon à ce que le filtre appris soit adaptatif à ces égards. / Over the last twenty years, the amount of transmitted images and videos has increased noticeably, mainly urged on by Facebook and Netflix. Even though broadcast capacities improve, this growing amount of transmitted images and videos requires increasingly efficient compression methods. This thesis aims at improving via learning two critical components of the modern image compression standards, which are the transform and the intra prediction. More precisely, deep neural networks are used for this task as they exhibit high power of approximation, which is needed for learning a reliable approximation of an optimal transform (or an optimal intra prediction filter) applied to image pixels. Regarding the learning of a transform for image compression via neural networks, a challenge is to learn an unique transform that is efficient in terms of rate-distortion while keeping this efficiency when compressing at different rates. That is why two approaches are proposed to take on this challenge. In the first approach, the neural network architecture sets a sparsity on the transform coefficients. The level of sparsity gives a direct control over the compression rate. To force the transform to adapt to different compression rates, the level of sparsity is stochastically driven during the training phase. In the second approach, the rate-distortion efficiency is obtained by minimizing a rate-distortion objective function during the training phase. During the test phase, the quantization step sizes are gradually increased according a scheduling to compress at different rates using the single learned transform. Regarding the learning of an intra prediction filter for image compression via neural networks, the issue is to obtain a learned filter that is adaptive with respect to the size of the image block to be predicted, with respect to missing information in the context of prediction, and with respect to the variable quantization noise in this context. A set of neural networks is designed and trained so that the learned prediction filter has this adaptibility.
13

Reconnaissance visuelle robuste par réseaux de neurones dans des scénarios d'exploration robotique. Détecte-moi si tu peux ! / Robust visual recognition by neural networks in robotic exploration scenarios. Detect me if you can!

Guerry, Joris 20 November 2017 (has links)
L'objectif principal ce travail de thèse est la reconnaissance visuelle pour un robot mobile dans des conditions difficiles. En particulier nous nous intéressons aux réseaux de neurones qui présentent aujourd'hui les meilleures performances en vision par ordinateur. Nous avons étudié le principe de sélection de méthodes pour la classification d'images 2D en utilisant un réseau de neurones sélecteur pour choisir le meilleur classifieur disponible étant donnée la situation observée. Cette stratégie fonctionne lorsque les données peuvent être facilement partitionnées vis-à-vis des classifieurs disponibles, ce qui est le cas quand des modalités complémentaires sont utilisées. Nous avons donc utilisé des données RGB-D (2.5D) en particulier appliquées à la détection de personnes. Nous proposons une combinaison de réseaux de neurones détecteurs indépendants propres à chaque modalité (couleur & carte de profondeur) basés sur une même architecture (le Faster RCNN). Nous partageons des résultats intermédiaires des détecteurs pour leur permettre de se compléter et d'améliorer la performance globale en situation difficile (perte de luminosité ou bruit d'acquisition de la carte de profondeur). Nous établissons un nouvel état de l'art dans le domaine et proposons un jeu de données plus complexe et plus riche à la communauté (ONERA.ROOM). Enfin, nous avons fait usage de l'information 3D contenue dans les images RGB-D au travers d'une méthode multi-vue. Nous avons défini une stratégie de génération de vues virtuelles 2D cohérentes avec la structure 3D. Pour une tâche de segmentation sémantique, cette approche permet d'augmenter artificiellement les données d'entraînement pour chaque image RGB-D et d'accumuler différentes prédictions lors du test. Nous obtenons de nouveaux résultats de référence sur les jeux de données SUNRGBD et NYUDv2. Ces travaux de thèse nous ont permis d'aborder de façon originale des données robotiques 2D, 2.5D et 3D avec des réseaux de neurones. Que ce soit pour la classification, la détection et la segmentation sémantique, nous avons non seulement validé nos approches sur des jeux de données difficiles, mais également amené l'état de l'art à un nouveau niveau de performance. / The main objective of this thesis is visual recognition for a mobile robot in difficult conditions. We are particularly interested in neural networks which present today the best performances in computer vision. We studied the concept of method selection for the classification of 2D images by using a neural network selector to choose the best available classifier given the observed situation. This strategy works when data can be easily partitioned with respect to available classifiers, which is the case when complementary modalities are used. We have therefore used RGB-D data (2.5D) in particular applied to people detection. We propose a combination of independent neural network detectors specific to each modality (color & depth map) based on the same architecture (Faster RCNN). We share intermediate results of the detectors to allow them to complement and improve overall performance in difficult situations (luminosity loss or acquisition noise of the depth map). We are establishing new state of the art scores in the field and propose a more complex and richer data set to the community (ONERA.ROOM). Finally, we made use of the 3D information contained in the RGB-D images through a multi-view method. We have defined a strategy for generating 2D virtual views that are consistent with the 3D structure. For a semantic segmentation task, this approach artificially increases the training data for each RGB-D image and accumulates different predictions during the test. We obtain new reference results on the SUNRGBD and NYUDv2 datasets. All these works allowed us to handle in an original way 2D, 2.5D and 3D robotic data with neural networks. Whether for classification, detection and semantic segmentation, we not only validated our approaches on difficult data sets, but also brought the state of the art to a new level of performance.
14

Deep learning based semi-supervised video anomaly detection

Baradaran, Mohammad 16 January 2024 (has links)
Thèse ou mémoire avec insertion d'articles / La détection d'anomalies vidéo (DAV) est une tâche cruciale de vision par ordinateur pour diverses applications du monde réel telles que la vidéosurveillance, le contrôle qualité, etc. Avec la rareté des données d'anomalies étiquetées et la nature ouverte des définitions d'anomalies, il y a eu une croissance d'intérêt des chercheurs pour l'exploration de méthodes semi-supervisées de détection d'anomalies vidéo. Ces méthodes utilisent une tâche proxy pour ajuster un modèle sur des échantillons normaux, en tenant compte de leurs caractéristiques d'apparence et de mouvement. Les anomalies sont par conséquent détectées en mesurant l'écart des échantillons de test par rapport au modèle normal formé. Cette thèse est dédiée à l'avancement de ce domaine, englobant quatre composantes distinctes. Dans la partie initiale, nous menons une étude approfondie sur les méthodes DAV semi-supervisées de pointe existantes afin d'examiner leurs points forts et leurs défis. Pour compléter notre examen, nous effectuons également des expériences pour mieux comprendre les capacités et les limites des approches existantes. Les résultats de cette étude servent de source de motivation et mettent en lumière l'orientation de notre recherche. Cette étude est publiée sous la forme d'un article de synthèse (MTAP2023). Lors de l'analyse des méthodes existantes, il devient évident qu'elles ne tiennent pas suffisamment compte de la classe des objets lorsqu'il s'agit de détecter des anomalies d'apparence. Inspirés par ce besoin, nous proposons, dans la deuxième partie, une méthode DAV basée sur l'apprentissage en profondeur et sensible aux classes d'objets. C'est une méthode à deux flux qui modélise et détecte les anomalies de mouvement et d'apparence dans différentes branches. Dans la branche apparence, nous introduisons une approche basée sur la distillation des connaissances qui utilise une méthode de segmentation sémantique pré-entraînée (Mask-RCNN) pour former un réseau étudiant dédié à la segmentation sémantique avec des objets normaux. Par conséquent, en mesurant l'écart entre les sorties des réseaux enseignant et étudiant, nous dérivons un score d'anomalie pour la branche d'apparence. La branche de mouvement, d'autre part, traduit une image brute en sa carte de magnitude de flux optique correspondante, pour modéliser les mouvements normaux et détecter les anomalies associées. L'approche de modélisation de mouvement proposée atténue le risque de généralisation aux anomalies, améliorant ainsi la fiabilité et la précision du processus de détection. Les résultats de cette étude ont été publiés sous forme d'article de conférence (CRV 2022). Dans la troisième partie, nous proposons une méthode de détection d'anomalies vidéo basée sur l'apprentissage multi-tâches visant à tirer parti des avantages de la combinaison de plusieurs tâches proxy complémentaires pour améliorer les performances de détection d'anomalies. Différentes tâches complémentaires sont proposées en tenant compte de leurs capacités et insuffisances à détecter différents cas d'anomalies. De plus, nous proposons une nouvelle tâche proxy de prédiction de carte de segmentation sémantique future pour la détection d'anomalies vidéo qui bénéficie des capacités de prédiction de trames futures et de tâches de segmentation sémantique pour la détection d'anomalies de mouvement et d'apparence. De plus, pour améliorer encore la détection des anomalies de mouvement, nous intégrons la tâche de prédiction de l'amplitude du flux optique à partir d'une trame brute dans une autre branche. Finalement, pour relever les défis rencontrés dans notre méthode précédente, nous proposons plusieurs mécanismes d'attention pour engager des informations contextuelles dans la modélisation de mouvement, conduisant à une amélioration des performances. Les résultats de cette étude ont été publiés sous forme d'article de conférence (CVPRW 2023). Dans la dernière partie, nous relevons un autre défi dans la modélisation du mouvement. Tant dans nos méthodes proposées que dans d'autres méthodes existantes, les modèles de mouvement à long terme n'ont pas été efficacement pris en compte pour la détection d'anomalies vidéo. Pour remédier à cette limitation, nous proposons une nouvelle tâche proxy pour la détection d'anomalies vidéo : la prédiction vidéo future à partir d'une seule image. Cette méthode prend en compte les modèles de mouvement à long terme en plus des modèles à court terme pour la détection d'anomalies vidéo et relève le défi de la généralisation aux mouvements anormaux. Cette étude donne des résultats significatifs. Les résultats démontrent que la formulation de DAV comme une prédiction d'images plus éloignées dans le futur (au lieu de l'image suivante immédiate) entraîne une plus grande disparité entre les normales et les anomalies et donc une amélioration des performances. Les résultats de cette étude sont acceptés sous forme d'article de conférence (ISVC 2023). Nos résultats qualitatifs et quantitatifs ainsi que des études d'ablation sur des ensembles de données de référence tels que les ensembles de données ShanghaiTech, UCSD-Ped1 et UCSD-Ped2 démontrent le succès de chaque contribution de notre thèse dans la réalisation de leurs objectifs respectifs. / Video anomaly detection (VAD) is a crucial computer vision task for various real-world applications such as video surveillance, quality control, etc. With the scarcity of labeled anomaly data and the open-ended nature of anomaly definitions, there has been a growing interest among researchers in exploring semi-supervised methods for video anomaly detection. These methods employ a proxy-task to fit a model on normal samples, taking into account their appearance and motion features. Anomalies are consequently detected by measuring the deviation of test samples from the trained normal model. This thesis is dedicated to advancing this field, encompassing four distinct components. In the initial part, we conduct an in-depth study on existing state-of-the-art semi-supervised VAD methods to examine their strong points and challenges. To supplement our review, we also conduct experiments to gain deeper insights into the capabilities and limitations of existing approaches. The outcomes of this study serve as a source of motivation and highlights the direction of our research. This study is published as a review paper (MTAP2023). Upon analyzing the existing methods, it becomes apparent that they do not adequately consider the object class when it comes to detecting appearance anomalies. Inspired by this need, we propose, in the second part, a two-stream object class-aware deep learning based VAD method that models and detects motion and appearance anomalies in different network branches. In the appearance branch, we introduce a knowledge-distillation-based approach that utilizes a pre-trained semantic segmentation method (Mask-RCNN) to train a student network dedicated to semantic segmentation with normal objects. Consequently, by measuring the disparity between the outputs of the teacher and student networks, we derive an anomaly score for the appearance branch. Motion branch, on the other hand, translates a raw frame to its corresponding optical flow magnitude map, to model normal motions and detect related anomalies. The proposed motion modeling approach, mitigates the risk of generalization to anomalies, thus enhancing the reliability and precision of the detection process. Results of this study is published as a conference paper (CRV 2022). In the third part, we put forth a multi-task learning based video anomaly detection method aimed at leveraging the benefits of combining multiple complementary proxy-tasks to enhance anomaly detection performance. Different complementary tasks are suggested taking into ac count their abilities and shortcomings in detecting different anomaly cases. Moreover, we propose a novel proxy-task of future semantic segmentation map prediction for video anomaly detection which benefits from the abilities of future frame prediction and semantic segmentation tasks for motion and appearance anomaly detection. Additionally, to further enhance the detection of motion anomalies, we incorporate the task of optical flow magnitude prediction from a raw frame in another branch. Finally, to address the challenges encountered in our previous method, we propose multiple attention mechanisms to engage context information in motion modeling, leading to performance improvement. Results of this study is published as a conference paper (CVPRW 2023). As the final part, we tackle another challenge in motion modeling. Both in our proposed methods and other existing methods, long-term motion patterns have not been effectively considered for video anomaly detection. To address this limitation, we put forward a novel proxy-task for video anomaly detection: future video prediction from a single frame. This method considers long-term motion patterns in addition to short-term ones for video anomaly detection and addresses the challenge of generalization to abnormal motion. This study yields significant findings. The results demonstrate that formulating VAD as a prediction of farther frames in the future (instead of the immediate next frame) results in a larger disparity between normals and anomalies and hence in improved performance. Results of this study is accepted as a conference paper (ISVC 2023). Our qualitative and quantitative results along with ablation studies on benchmark datasets such as ShanghaiTech, UCSD-Ped1 and UCSD-Ped2 datasets demonstrate the success of each contribution of our thesis in achieving their respective goals.
15

Deep learning for object detection in robotic grasping contexts

Mercier, Jean-Philippe 12 August 2021 (has links)
Dans la dernière décennie, les approches basées sur les réseaux de neurones convolutionnels sont devenus les standards pour la plupart des tâches en vision numérique. Alors qu'une grande partie des méthodes classiques de vision étaient basées sur des règles et algorithmes, les réseaux de neurones sont optimisés directement à partir de données d'entraînement qui sont étiquetées pour la tâche voulue. En pratique, il peut être difficile d'obtenir une quantité su sante de données d'entraînement ou d'interpréter les prédictions faites par les réseaux. Également, le processus d'entraînement doit être recommencé pour chaque nouvelle tâche ou ensemble d'objets. Au final, bien que très performantes, les solutions basées sur des réseaux de neurones peuvent être difficiles à mettre en place. Dans cette thèse, nous proposons des stratégies visant à contourner ou solutionner en partie ces limitations en contexte de détection d'instances d'objets. Premièrement, nous proposons d'utiliser une approche en cascade consistant à utiliser un réseau de neurone comme pré-filtrage d'une méthode standard de "template matching". Cette façon de faire nous permet d'améliorer les performances de la méthode de "template matching" tout en gardant son interprétabilité. Deuxièmement, nous proposons une autre approche en cascade. Dans ce cas, nous proposons d'utiliser un réseau faiblement supervisé pour générer des images de probabilité afin d'inférer la position de chaque objet. Cela permet de simplifier le processus d'entraînement et diminuer le nombre d'images d'entraînement nécessaires pour obtenir de bonnes performances. Finalement, nous proposons une architecture de réseau de neurones ainsi qu'une procédure d'entraînement permettant de généraliser un détecteur d'objets à des objets qui ne sont pas vus par le réseau lors de l'entraînement. Notre approche supprime donc la nécessité de réentraîner le réseau de neurones pour chaque nouvel objet. / In the last decade, deep convolutional neural networks became a standard for computer vision applications. As opposed to classical methods which are based on rules and hand-designed features, neural networks are optimized and learned directly from a set of labeled training data specific for a given task. In practice, both obtaining sufficient labeled training data and interpreting network outputs can be problematic. Additionnally, a neural network has to be retrained for new tasks or new sets of objects. Overall, while they perform really well, deployment of deep neural network approaches can be challenging. In this thesis, we propose strategies aiming at solving or getting around these limitations for object detection. First, we propose a cascade approach in which a neural network is used as a prefilter to a template matching approach, allowing an increased performance while keeping the interpretability of the matching method. Secondly, we propose another cascade approach in which a weakly-supervised network generates object-specific heatmaps that can be used to infer their position in an image. This approach simplifies the training process and decreases the number of required training images to get state-of-the-art performances. Finally, we propose a neural network architecture and a training procedure allowing detection of objects that were not seen during training, thus removing the need to retrain networks for new objects.
16

Extraction automatique par apprentissage profond des obstacles et des facilitateurs à la mobilité des personnes à mobilité réduite à partir des données LiDAR mobile

Ghodhbane, Sarra 03 January 2022 (has links)
La mobilité est une habitude de vie fondamentale pour la participation sociale des personnes à mobilité réduite (PMRs). L'un des plus grands défis des PMRs est de trouver des itinéraires accessibles pour leur déplacement en ville. À cet égard, plusieurs groupes de recherche, dont MobiliSIG, s'intéressent à l'évaluation de l'accessibilité des lieux en appui au développement des outils d'assistance à la mobilité des PMRs. Cependant, les méthodes traditionnelles de l'acquisition et le traitement de données pertinentes pour l'analyse de l'accessibilité de l'environnement urbain sont généralement peu précises, peu efficaces et très coûteuses en temps et en argent. Dans ce contexte, la technologie lidar présente une alternative intéressante pour l'acquisition de données très détaillées et précises sur l'environnement urbain. De plus, les techniques issues de l'intelligence artificielle ont démontré de grands potentiels pour l'extraction automatique de l'information pertinente à partir de nuages de points lidar. À cet effet, l'objectif global de cette recherche est d'évaluer le potentiel des nouvelles approches basées sur l'apprentissage profond pour la segmentation sémantique de nuages de points lidar afin d'automatiser l'extraction des obstacles et des facilitateurs (trottoirs, ilots de refuge, marches, etc.) en lien avec la mobilité des PMRs. Pour ce faire, nous nous sommes particulièrement intéressés au potentiel des méthodes d'apprentissage profond telles que les algorithmes de Superpoint graph et FKAconv. Les principales étapes de cette recherche consistent à : 1) élaborer une base de données 3D annotée dédiée à la mobilité des PMRs, 2) appliquer et évaluer les algorithmes de l'apprentissage profond, 3) mettre en évidence les défis rencontrés dans l'apprentissage sémantique en 3D à partir de données lidar mobile (données irrégulières et volumineuses, la complexité des scènes urbaines, morphologie très variable des instances, etc.). Les algorithmes visés sont appliqués aux données lidar mobile pour analyser l'accès aux commerces au centre-ville de Québec. Les résultats de cette recherche ont démontré le potentiel des méthodes d'apprentissage profond pour la segmentation sémantique des éléments pertinents à la mobilité des PMRs à partir des données lidar mobile. Cependant, ces méthodes souffrent de plusieurs problèmes qui engendrent de mauvaises classifications menant à des imperfections de segmentation. / Mobility is a fundamental life habit for the social participation of people with motor disabilities (PMD). One of the biggest challenges for PMDs is to find accessible itineraries for their movement in the city. In this respect, several research groups, including MobiliSIG, are interested in assessing the accessibility of places to support the development of mobility assistance tools for PMDs. However, traditional methods for acquiring and processing data relevant to the analysis of the accessibility of the urban environments are generally inefficient and very costly in terms of time and money. In this context, the lidar technology presents an interesting alternative for the acquisition of very detailed and accurate data on the urban environment. Moreover, artificial intelligence techniques have shown great potential for the automatic extraction of relevant information from lidar point clouds. To this end, the overall objective of this research is to evaluate the potential of new deep learning-based approaches for the semantic segmentation of lidar point clouds to automate the extraction of obstacles and facilitators (sidewalks, island, steps, etc.) related to the mobility of PMDs. To do so, we were particularly interested in the potential of deep learning methods such as Superpoint graph and FKAconv algorithms. The main steps of this research are: 1) to develop an annotated 3D database dedicated to mobility setoff PMDs, 2) to apply and evaluate the deep learning algorithms, 3) to highlight the challenges encountered in 3D semantic learning (irregular and voluminous data, complexity of urban scenes, highly variable morphology of instances, etc.). The selected algorithms are applied to mobile lidar data to analyze access to shops in downtown Quebec City. The results of this research have demonstrated the potential of deep learning methods for semantic segmentation of elements relevant to PRM mobility from mobile lidar data. However, these methods still suffer from several problems that lead to misclassifications leading to segmentation imperfections.
17

Deep representation learning for visual place recognition

Ali-bey, Amar 22 March 2024 (has links)
Thèse ou mémoire avec insertion d'articles / La navigation autonome a une longue histoire dans la recherche en robotique et attire de plus en plus l'attention de chercheurs et industriels. Actuellement, les véhicules autonomes dépendent largement du Système de Positionnement Global (GPS) pour la localisation. Toutefois, les lacunes du GPS dans les environnements urbains et souterrains rendent la localisation basée sur la vision une alternative intéressante. Cette dernière peut être réalisée au moyen de la Reconnaissance Visuelle de Lieux (RVL). Sujet qui sera traité en profondeur dans cette thèse. La Reconnaissance Visuelle de Lieu est la méthode par laquelle un système identifie un emplacement représenté dans une image requête en la comparant à une base de données préexistante correspondant à des lieux connus. Les techniques traditionnelles de reconnaissance visuelle reposent souvent sur des descripteurs de caractéristiques locales ou globales élaborés à la main, ce qui présente des difficultés inhérentes qui compliquent leur application à grande échelle. L'avènement des réseaux de neurones profonds a montré un potentiel significatif pour améliorer les capacités des méthodes de RVL. Ces réseaux nécessitent de grands ensembles de données pour l'entraînement et des fonctions de perte spécialisées pour l'apprentissage des paramètres, ouvrant ainsi de nouvelles voies pour la recherche et l'innovation dans ce domaine. Cette thèse propose une étude exhaustive de l'apprentissage profond pour la RVL. Elle se concentre sur trois composantes principales : l'ensemble de données d'entraînement, l'architecture du réseau de neurones et le processus d'apprentissage de paramètres. Tout d'abord, un ensemble de données à grande échelle composé de 560 000 images à travers 67 000 lieux, appelé GSV-Cities, est présenté. Cette base de données permet de relever les défis associés à la supervision faible qui entrave les méthodes existantes, ce qui se traduit par une amélioration des performances et une réduction significative du temps d'entraînement. De plus, l'importance des fonctions de perte issues de l'apprentissage de similarité est illustrée, particulièrement lorsqu'elles sont employées avec les étiquettes de haute précision fournies par GSV-Cities. S'ensuit MixVPR, une architecture d'aggrégation basée entièrement sur les perceptrons multicouches. Cette architecture surpasse les méthodes de RVL les plus avancées, et ce, sur plusieurs benchmarks, tant en termes de performances de reconnaissance qu'en efficacité de calcul. Finalement, une nouvelle technique de formation de batches est présentée. Elle s'appuie sur des descripteurs compacts pour échantillonner efficacement des mini-batches hautement informatifs à chaque itération d'entraînement. Cette méthode maintient un niveau élevé de paires et de triplets informatifs tout au long de la phase d'apprentissage, conduisant à une amélioration significative des performances globales. Collectivement, les contributions apportées par cette thèse contribuent à l'avancement de l'état de l'art en matière de reconnaissance visuelle de lieux, et établissent une base solide pour la recherche et le développement futurs dans ce domaine. / Autonomous navigation has a long history in robotics research and has recently attracted a lot of attention from researchers and industrials. Currently, autonomous vehicles depend largely on the Global Positioning System (GPS) for localization, whose limitations in urban and subterrenean settings make vision-based localization an attractive alternative. This can be done by means of Visual Place Recognition (VPR), which is addressed in depth in this thesis. Visual Place Recognition (VPR) is the method by which a system identifies a location depicted in a query image by comparing it to a pre-existing database of visual information corresponding to known locations. Traditional VPR techniques often rely on hand-crafted local or global feature descriptors, which present inherent challenges that complicate their application in large-scale settings. The emergence of deep neural networks has shown significant promise in advancing VPR methods capabilities. Such networks require extensive datasets for training and specialized loss functions for parameter learnin. This opens new avenues for research and innovation in the field of VPR. First, GSV-Cities, a large-scale dataset comprised of 560,000 images across 67,000 places, is introduced. This dataset alleviates the challenge of weak supervision that constrains current methods, leading to improved performance and significantly reduction in training time. The importance of similarity learning loss functions, especially when paired with the accurate labels of GSV-Cities, is also highlighted. Second, MixVPR, a new aggregation technique is presented. It outperforms existing state-of-the-art VPR methods on multiple benchmarks, not just in terms of accuracy but also in computational efficiency. Lastly, a novel batch formation technique is introduced, which utilizes compact proxy descriptors for the efficient sampling of highly informative mini-batches at each training iteration. This method maintains a high level of informative pairs and triplets throughout the training phase, leading to a substantial improvement in overall performance. Collectively, the contributions of this thesis serve to advance the current state-of-the-art in Visual Place Recognition (VPR), and establish a strong foundation for future research.
18

Weight parameterizations in deep neural networks / Paramétrisation des poids des réseaux de neurones profonds

Zagoruyko, Sergey 07 September 2018 (has links)
Les réseaux de neurones multicouches ont été proposés pour la première fois il y a plus de trois décennies, et diverses architectures et paramétrages ont été explorés depuis. Récemment, les unités de traitement graphique ont permis une formation très efficace sur les réseaux neuronaux et ont permis de former des réseaux beaucoup plus grands sur des ensembles de données plus importants, ce qui a considérablement amélioré le rendement dans diverses tâches d'apprentissage supervisé. Cependant, la généralisation est encore loin du niveau humain, et il est difficile de comprendre sur quoi sont basées les décisions prises. Pour améliorer la généralisation et la compréhension, nous réexaminons les problèmes de paramétrage du poids dans les réseaux neuronaux profonds. Nous identifions les problèmes les plus importants, à notre avis, dans les architectures modernes : la profondeur du réseau, l'efficacité des paramètres et l'apprentissage de tâches multiples en même temps, et nous essayons de les aborder dans cette thèse. Nous commençons par l'un des problèmes fondamentaux de la vision par ordinateur, le patch matching, et proposons d'utiliser des réseaux neuronaux convolutifs de différentes architectures pour le résoudre, au lieu de descripteurs manuels. Ensuite, nous abordons la tâche de détection d'objets, où un réseau devrait apprendre simultanément à prédire à la fois la classe de l'objet et l'emplacement. Dans les deux tâches, nous constatons que le nombre de paramètres dans le réseau est le principal facteur déterminant sa performance, et nous explorons ce phénomène dans les réseaux résiduels. Nos résultats montrent que leur motivation initiale, la formation de réseaux plus profonds pour de meilleures représentations, ne tient pas entièrement, et des réseaux plus larges avec moins de couches peuvent être aussi efficaces que des réseaux plus profonds avec le même nombre de paramètres. Dans l'ensemble, nous présentons une étude approfondie sur les architectures et les paramétrages de poids, ainsi que sur les moyens de transférer les connaissances entre elles / Multilayer neural networks were first proposed more than three decades ago, and various architectures and parameterizations were explored since. Recently, graphics processing units enabled very efficient neural network training, and allowed training much larger networks on larger datasets, dramatically improving performance on various supervised learning tasks. However, the generalization is still far from human level, and it is difficult to understand on what the decisions made are based. To improve on generalization and understanding we revisit the problems of weight parameterizations in deep neural networks. We identify the most important, to our mind, problems in modern architectures: network depth, parameter efficiency, and learning multiple tasks at the same time, and try to address them in this thesis. We start with one of the core problems of computer vision, patch matching, and propose to use convolutional neural networks of various architectures to solve it, instead of manual hand-crafting descriptors. Then, we address the task of object detection, where a network should simultaneously learn to both predict class of the object and the location. In both tasks we find that the number of parameters in the network is the major factor determining it's performance, and explore this phenomena in residual networks. Our findings show that their original motivation, training deeper networks for better representations, does not fully hold, and wider networks with less layers can be as effective as deeper with the same number of parameters. Overall, we present an extensive study on architectures and weight parameterizations, and ways of transferring knowledge between them
19

Learning Deep Representations : Toward a better new understanding of the deep learning paradigm / Apprentissage de représentations profondes : vers une meilleure compréhension du paradigme d'apprentissage profond

Arnold, Ludovic 25 June 2013 (has links)
Depuis 2006, les algorithmes d’apprentissage profond qui s’appuient sur des modèles comprenant plusieurs couches de représentations ont pu surpasser l’état de l’art dans plusieurs domaines. Les modèles profonds peuvent être très efficaces en termes du nombre de paramètres nécessaires pour représenter des opérations complexes. Bien que l’entraînement des modèles profonds ait été traditionnellement considéré comme un problème difficile, une approche réussie a été d’utiliser une étape de pré-entraînement couche par couche, non supervisée, pour initialiser des modèles profonds supervisés. Tout d’abord, l’apprentissage non-supervisé présente de nombreux avantages par rapport à la généralisation car il repose uniquement sur des données non étiquetées qu’il est facile de trouver. Deuxièmement, la possibilité d’apprendre des représentations couche par couche, au lieu de toutes les couches à la fois, améliore encore la généralisation et réduit les temps de calcul. Cependant, l’apprentissage profond pose encore beaucoup de questions relatives à la consistance de l’apprentissage couche par couche, avec de nombreuses couches, et à la difficulté d’évaluer la performance, de sélectionner les modèles et d’optimiser la performance des couches. Dans cette thèse, nous examinons d’abord les limites de la justification variationnelle actuelle pour l’apprentissage couche par couche qui ne se généralise pas bien à de nombreuses couches et demandons si une méthode couche par couche peut jamais être vraiment consistante. Nous constatons que l’apprentissage couche par couche peut en effet être consistant et peut conduire à des modèles génératifs profonds optimaux. Pour ce faire, nous introduisons la borne supérieure de la meilleure probabilité marginale latente (BLM upper bound), un nouveau critère qui représente la log-vraisemblance maximale d’un modèle génératif profond quand les couches supérieures ne sont pas connues. Nous prouvons que la maximisation de ce critère pour chaque couche conduit à une architecture profonde optimale, à condition que le reste de l’entraînement se passe bien. Bien que ce critère ne puisse pas être calculé de manière exacte, nous montrons qu’il peut être maximisé efficacement par des auto-encodeurs quand l’encodeur du modèle est autorisé à être aussi riche que possible. Cela donne une nouvelle justification pour empiler les modèles entraînés pour reproduire leur entrée et donne de meilleurs résultats que l’approche variationnelle. En outre, nous donnons une approximation calculable de la BLM upper bound et montrons qu’elle peut être utilisée pour estimer avec précision la log-vraisemblance finale des modèles. Nous proposons une nouvelle méthode pour la sélection de modèles couche par couche pour les modèles profonds, et un nouveau critère pour déterminer si l’ajout de couches est justifié. Quant à la difficulté d’entraîner chaque couche, nous étudions aussi l’impact des métriques et de la paramétrisation sur la procédure de descente de gradient couramment utilisée pour la maximisation de la vraisemblance. Nous montrons que la descente de gradient est implicitement liée à la métrique de l’espace sous-jacent et que la métrique Euclidienne peut souvent être un choix inadapté car elle introduit une dépendance sur la paramétrisation et peut entraîner une violation de la symétrie. Pour pallier ce problème, nous étudions les avantages du gradient naturel et montrons qu’il peut être utilisé pour restaurer la symétrie, mais avec un coût de calcul élevé. Nous proposons donc qu’une paramétrisation centrée peut rétablir la symétrie avec une très faible surcharge computationnelle. / Since 2006, deep learning algorithms which rely on deep architectures with several layers of increasingly complex representations have been able to outperform state-of-the-art methods in several settings. Deep architectures can be very efficient in terms of the number of parameters required to represent complex operations which makes them very appealing to achieve good generalization with small amounts of data. Although training deep architectures has traditionally been considered a difficult problem, a successful approach has been to employ an unsupervised layer-wise pre-training step to initialize deep supervised models. First, unsupervised learning has many benefits w.r.t. generalization because it only relies on unlabeled data which is easily found. Second, the possibility to learn representations layer by layer instead of all layers at once improves generalization further and reduces computational time. However, deep learning is a very recent approach and still poses a lot of theoretical and practical questions concerning the consistency of layer-wise learning with many layers and difficulties such as evaluating performance, performing model selection and optimizing layers. In this thesis we first discuss the limitations of the current variational justification for layer-wise learning which does not generalize well to many layers. We ask if a layer-wise method can ever be truly consistent, i.e. capable of finding an optimal deep model by training one layer at a time without knowledge of the upper layers. We find that layer-wise learning can in fact be consistent and can lead to optimal deep generative models. To do this, we introduce the Best Latent Marginal (BLM) upper bound, a new criterion which represents the maximum log-likelihood of a deep generative model where the upper layers are unspecified. We prove that maximizing this criterion for each layer leads to an optimal deep architecture, provided the rest of the training goes well. Although this criterion cannot be computed exactly, we show that it can be maximized effectively by auto-encoders when the encoder part of the model is allowed to be as rich as possible. This gives a new justification for stacking models trained to reproduce their input and yields better results than the state-of-the-art variational approach. Additionally, we give a tractable approximation of the BLM upper-bound and show that it can accurately estimate the final log-likelihood of models. Taking advantage of these theoretical advances, we propose a new method for performing layer-wise model selection in deep architectures, and a new criterion to assess whether adding more layers is warranted. As for the difficulty of training layers, we also study the impact of metrics and parametrization on the commonly used gradient descent procedure for log-likelihood maximization. We show that gradient descent is implicitly linked with the metric of the underlying space and that the Euclidean metric may often be an unsuitable choice as it introduces a dependence on parametrization and can lead to a breach of symmetry. To mitigate this problem, we study the benefits of the natural gradient and show that it can restore symmetry, regrettably at a high computational cost. We thus propose that a centered parametrization may alleviate the problem with almost no computational overhead.
20

Modélisation de la structure du silicium amorphe à l’aide d’algorithmes d’apprentissage profond

Comin, Massimiliano 08 1900 (has links)
No description available.

Page generated in 0.4903 seconds