• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Une double approche modulaire de l'apprentissage par renforcement pour des agents intelligents adaptatifs

Buffet, Olivier 10 September 2003 (has links) (PDF)
Cette thèse s'est intéressée à deux domaines de l'intelligence artificielle : d'une part l'apprentissage par renforcement (A/R), et d'autre part les systèmes multi-agents (SMA). Le premier permet de concevoir des agents (entités intelligentes) en se basant sur un signal de renforcement qui récompense les décisions menant au but fixé, alors que le second concerne l'intelligence qui peut venir de l'interaction d'un groupe d'entités (dans la perspective que le tout soit plus que la somme de ses parties). Chacun de ces deux outils souffre de diverses difficultés d'emploi. Le travail que nous avons mené a permis de montrer comment chacun des deux outils peut servir à l'autre pour répondre à certains de ces problèmes. On a ainsi conçu les agents d'un SMA par A/R, et organisé l'architecture d'un agent apprenant par renforcement sous la forme d'un SMA. Ces deux outils se sont avérés très complémentaires, et notre approche globale d'une conception “progressive” a prouvé son efficacité.
2

Apprentissage dans les réseaux récurrents pour la modélisation mécanique et étude de leurs interactions avec l'environnement

Szilas, Nicolas 06 December 1995 (has links) (PDF)
Issus d'une analogie avec les réseaux de neurones biologiques du cerveau, les réseaux récurrents sont utilisés pour modéliser des comportements dynamiques complexes et pour reproduire - apprendre - ces comportements. Les propriétés adaptatives de ces réseaux peuvent être exploitées par les réseaux de modélisation physique de phénomènes vibratoires dédiés à la simulation informatique d'instruments de musique. Ces réseaux de modélisation mécanique possèdent des paramètres d'inertie, d'élasticité et de viscosité que l'on souhaite déterminer automatiquement dans le but de reproduire un comportement physique donné ; cette détermination est possible grâce aux réseaux récurrents. Nous développons ainsi un certain nombre d'algorithmes de réseaux de modélisation physique adaptatifs et proposons des algorithmes originaux, inspirés de modèles mécaniques. En particulier, ce travail aborde la notion d'interaction avec l'environnement dans ce type de réseaux, et plus généralement dans les réseaux connexionnistes supervisés. A travers plusieurs expériences, nous montrons que, sous certaines conditions, l'interaction avec l'environnement permet la réussite de l'apprentissage, en particulier si cette interaction autorise un apprentissage à complexité progressive. De plus, nous établissons des rapprochements entre ce type d'apprentissage et certains apprentissages humains. Cela nous amène à poser les bases d'un système d'identification de paramètres pour la modélisation d'instruments de musique. Ce système fait interagir en temps réel un instrumentiste, un instrument de musique et un ordinateur simulant le modèle adaptatif
3

IIRC : Incremental Implicitly-Refined Classification

Abdelsalam, Mohamed 05 1900 (has links)
Nous introduisons la configuration de la "Classification Incrémentale Implicitement Raffinée / Incremental Implicitly-Refined Classification (IIRC)", une extension de la configuration de l'apprentissage incrémental des classes où les lots de classes entrants possèdent deux niveaux de granularité, c'est-à-dire que chaque échantillon peut avoir une étiquette (label) de haut niveau (brute), comme "ours”, et une étiquette de bas niveau (plus fine), comme "ours polaire". Une seule étiquette (label) est fournie à la fois, et le modèle doit trouver l’autre étiquette s’il l’a déjà apprise. Cette configuration est plus conforme aux scénarios de la vie réelle, où un apprenant aura tendance à interagir avec la même famille d’entités plusieurs fois, découvrant ainsi encore plus de granularité à leur sujet, tout en essayant de ne pas oublier les connaissances acquises précédemment. De plus, cette configuration permet d’évaluer les modèles pour certains défis importants liés à l’apprentissage tout au long de la vie (lifelong learning) qui ne peuvent pas être facilement abordés dans les configurations existantes. Ces défis peuvent être motivés par l’exemple suivant: “si un modèle a été entraîné sur la classe ours dans une tâche et sur ours polaire dans une autre tâche; oubliera-t-il le concept d’ours, déduira-t-il à juste titre qu’un ours polaire est également un ours ? et associera-t-il à tort l’étiquette d’ours polaire à d’autres races d’ours ?” Nous développons un benchmark qui permet d’évaluer les modèles sur la configuration de l’IIRC. Nous évaluons plusieurs algorithmes d’apprentissage ”tout au long de la vie” (lifelong learning) de l’état de l’art. Par exemple, les méthodes basées sur la distillation sont relativement performantes mais ont tendance à prédire de manière incorrecte un trop grand nombre d’étiquettes par image. Nous espérons que la configuration proposée, ainsi que le benchmark, fourniront un cadre de problème significatif aux praticiens. / We introduce the "Incremental Implicitly-Refined Classification (IIRC)" setup, an extension to the class incremental learning setup where the incoming batches of classes have two granularity levels. i.e., each sample could have a high-level (coarse) label like "bear" and a low-level (fine) label like "polar bear". Only one label is provided at a time, and the model has to figure out the other label if it has already learned it. This setup is more aligned with real-life scenarios, where a learner usually interacts with the same family of entities multiple times, discovers more granularity about them, while still trying not to forget previous knowledge. Moreover, this setup enables evaluating models for some important lifelong learning challenges that cannot be easily addressed under the existing setups. These challenges can be motivated by the example "if a model was trained on the class bear in one task and on polar bear in another task, will it forget the concept of bear, will it rightfully infer that a polar bear is still a bear? and will it wrongfully associate the label of polar bear to other breeds of bear?". We develop a standardized benchmark that enables evaluating models on the IIRC setup. We evaluate several state-of-the-art lifelong learning algorithms and highlight their strengths and limitations. For example, distillation-based methods perform relatively well but are prone to incorrectly predicting too many labels per image. We hope that the proposed setup, along with the benchmark, would provide a meaningful problem setting to the practitioners.

Page generated in 0.075 seconds