• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Apprentissage séquentiel avec similitudes / Sequential learning with similarities

Kocák, Tomáš 28 November 2016 (has links)
Dans cette thèse nous étudions différentes généralisations du problème dit « du bandit manchot ». Le problème du bandit manchot est un problème de décision séquentiel au cours duquel un agent sélectionne successivement des actions et obtient une récompense pour chacune d'elles. On fait généralement l'hypothèse que seule la récompense associée à l'action choisie est observée par l'agent, ce dernier ne reçoit aucune information sur les actions non choisies. Cette hypothèse s'avère parfois très restrictive pour certains problèmes très structurés tels que les systèmes de recommandations, la publicité en ligne, le routage de paquets, etc. Il paraît assez naturel de tenir compte de la connaissance de la structure du problème pour améliorer les performances des algorithmes d'apprentissage usuels. Dans cette thèse, nous nous focalisons sur les problèmes de bandits présentant une structure pouvant être modélisée par un graphe dont les nœuds représentent les actions. Dans un premier temps, nous étudierons le cas où les arêtes du graphe modélisent les similitudes entre actions. Dans un second temps, nous analyserons le cas où l'agent observe les récompenses de toutes les actions adjacentes à l'action choisie dans le graphe. Notre contribution principale a été d'élaborer de nouveaux algorithmes permettant de traiter efficacement les problèmes évoqués précédemment, et de démontrer théoriquement et empiriquement le bon fonctionnement de ces algorithmes. Nos travaux nous ont également amenés à introduire de nouvelles grandeurs, telles que la dimension effective et le nombre d'indépendance effectif, afin de caractériser la difficulté des différents problèmes. / This thesis studies several extensions of multi-armed bandit problem, where a learner sequentially selects an action and obtain the reward of the action. Traditionally, the only information the learner acquire is about the obtained reward while information about other actions is hidden from the learner. This limited feedback can be restrictive in some applications like recommender systems, internet advertising, packet routing, etc. Usually, these problems come with structure, similarities between users or actions, additional observations, or any additional assumptions. Therefore, it is natural to incorporate these assumptions to the algorithms to improve their performance. This thesis focuses on multi-armed bandit problem with some underlying structure usually represented by a graph with actions as vertices. First, we study a problem where the graph captures similarities between actions; connected actions tend to grand similar rewards. Second, we study a problem where the learner observes rewards of all the neighbors of the selected action. We study these problems under several additional assumptions on rewards (stochastic, adversarial), side observations (adversarial, stochastic, noisy), actions (one node at the time, several nodes forming a combinatorial structure in the graph). The main contribution of this thesis is to design algorithms for previously mentioned problems together with theoretical and empirical guaranties. We also introduce several novel quantities, to capture the difficulty of some problems, like effective dimension and effective independence number.
2

Approchabilité, Calibration et Regret dans les Jeux à Observations Partielles

Perchet, Vianney 25 June 2010 (has links) (PDF)
Cette thèse s'intéresse aux jeux statistiques avec observations partielles. Ces jeux ne sont pas la formalisation d'une intéraction stratégique entre deux joueurs parfaitement rationnels, mais entre un joueur et la nature (ou l'environnement). On donne ce nom au second joueur car aucune hypothèse n'est faite sur ses paiements, ses objectifs ou sa rationalité. Les observations du joueur sont dites complètes s'il observe les choix de la nature, i.e. si il apprend a posteriori soit quelle est, à chaque étape, l'action choisie par cette dernière soit au moins son propre paiement. On s'intéressera au cadre où cette hypothèse est aaiblie et où l'on suppose que le joueur n'a que des observations partielles : il ne reçoit à chaque étape qu'un signal aléatoire dont la loi dépend de l'action de la nature. L'objectif principal de cette thèse est de généraliser des notions largement utilis ées dans les jeux avec observations complètes au cadre des jeux avec observations partielles. Nous allons en eet, dans un premier temps, construire des stratégies qui n'ont pas de regret interne et dans un deuxième temps nous allons caractériser les ensembles approchables.
3

Contributions à l'analyse de fiabilité structurale : prise en compte de contraintes de monotonie pour les modèles numériques / Contributions to structural reliability analysis : accounting for monotonicity constraints in numerical models

Moutoussamy, Vincent 13 November 2015 (has links)
Cette thèse se place dans le contexte de la fiabilité structurale associée à des modèles numériques représentant un phénomène physique. On considère que la fiabilité est représentée par des indicateurs qui prennent la forme d'une probabilité et d'un quantile. Les modèles numériques étudiés sont considérés déterministes et de type boîte-noire. La connaissance du phénomène physique modélisé permet néanmoins de faire des hypothèses de forme sur ce modèle. La prise en compte des propriétés de monotonie dans l'établissement des indicateurs de risques constitue l'originalité de ce travail de thèse. Le principal intérêt de cette hypothèse est de pouvoir contrôler de façon certaine ces indicateurs. Ce contrôle prend la forme de bornes obtenues par le choix d'un plan d'expériences approprié. Les travaux de cette thèse se concentrent sur deux thématiques associées à cette hypothèse de monotonie. La première est l'étude de ces bornes pour l'estimation de probabilité. L'influence de la dimension et du plan d'expériences utilisé sur la qualité de l'encadrement pouvant mener à la dégradation d'un composant ou d'une structure industrielle sont étudiées. La seconde est de tirer parti de l'information de ces bornes pour estimer au mieux une probabilité ou un quantile. Pour l'estimation de probabilité, l'objectif est d'améliorer les méthodes existantes spécifiques à l'estimation de probabilité sous des contraintes de monotonie. Les principales étapes d'estimation de probabilité ont ensuite été adaptées à l'encadrement et l'estimation d'un quantile. Ces méthodes ont ensuite été mises en pratique sur un cas industriel. / This thesis takes place in a structural reliability context which involves numerical model implementing a physical phenomenon. The reliability of an industrial component is summarised by two indicators of failure,a probability and a quantile. The studied numerical models are considered deterministic and black-box. Nonetheless, the knowledge of the studied physical phenomenon allows to make some hypothesis on this model. The original work of this thesis comes from considering monotonicity properties of the phenomenon for computing these indicators. The main interest of this hypothesis is to provide a sure control on these indicators. This control takes the form of bounds obtained by an appropriate design of numerical experiments. This thesis focuses on two themes associated to this monotonicity hypothesis. The first one is the study of these bounds for probability estimation. The influence of the dimension and the chosen design of experiments on the bounds are studied. The second one takes into account the information provided by these bounds to estimate as best as possible a probability or a quantile. For probability estimation, the aim is to improve the existing methods devoted to probability estimation under monotonicity constraints. The main steps built for probability estimation are then adapted to bound and estimate a quantile. These methods have then been applied on an industrial case.
4

Contributions à l’agrégation séquentielle robuste d’experts : Travaux sur l’erreur d’approximation et la prévision en loi. Applications à la prévision pour les marchés de l’énergie. / Contributions to online robust aggregation : work on the approximation error and on probabilistic forecasting. Applications to forecasting for energy markets.

Gaillard, Pierre 06 July 2015 (has links)
Nous nous intéressons à prévoir séquentiellement une suite arbitraire d'observations. À chaque instant, des experts nous proposent des prévisions de la prochaine observation. Nous formons alors notre prévision en mélangeant celles des experts. C'est le cadre de l'agrégation séquentielle d'experts. L'objectif est d'assurer un faible regret cumulé. En d'autres mots, nous souhaitons que notre perte cumulée ne dépasse pas trop celle du meilleur expert sur le long terme. Nous cherchons des garanties très robustes~: aucune hypothèse stochastique sur la suite d'observations à prévoir n'est faite. Celle-ci est supposée arbitraire et nous souhaitons des garanties qui soient vérifiées quoi qu'il arrive. Un premier objectif de ce travail est l'amélioration de la performance des prévisions. Plusieurs possibilités sont proposées. Un exemple est la création d'algorithmes adaptatifs qui cherchent à s'adapter automatiquement à la difficulté de la suite à prévoir. Un autre repose sur la création de nouveaux experts à inclure au mélange pour apporter de la diversité dans l'ensemble d'experts. Un deuxième objectif de la thèse est d'assortir les prévisions d'une mesure d'incertitude, voire de prévoir des lois. Les applications pratiques sont nombreuses. En effet, très peu d'hypothèses sont faites sur les données. Le côté séquentiel permet entre autres de traiter de grands ensembles de données. Nous considérons dans cette thèse divers jeux de données du monde de l'énergie (consommation électrique, prix de l'électricité,...) pour montrer l'universalité de l'approche. / We are interested in online forecasting of an arbitrary sequence of observations. At each time step, some experts provide predictions of the next observation. Then, we form our prediction by combining the expert forecasts. This is the setting of online robust aggregation of experts. The goal is to ensure a small cumulative regret. In other words, we want that our cumulative loss does not exceed too much the one of the best expert. We are looking for worst-case guarantees: no stochastic assumption on the data to be predicted is made. The sequence of observations is arbitrary. A first objective of this work is to improve the prediction accuracy. We investigate several possibilities. An example is to design fully automatic procedures that can exploit simplicity of the data whenever it is present. Another example relies on working on the expert set so as to improve its diversity. A second objective of this work is to produce probabilistic predictions. We are interested in coupling the point prediction with a measure of uncertainty (i.e., interval forecasts,…). The real world applications of the above setting are multiple. Indeed, very few assumptions are made on the data. Besides, online learning that deals with data sequentially is crucial to process big data sets in real time. In this thesis, we carry out for EDF several empirical studies of energy data sets and we achieve good forecasting performance.
5

JEUX DE BANDITS ET FONDATIONS DU CLUSTERING

Bubeck, Sébastien 10 June 2010 (has links) (PDF)
Ce travail de thèse s'inscrit dans le domaine du machine learning et concerne plus particulièrement les sous-catégories de l'optimisation stochastique, du online learning et du clustering. Ces sous-domaines existent depuis plusieurs décennies mais ils ont tous reçu un éclairage différent au cours de ces dernières années. Notamment, les jeux de bandits offrent aujourd'hui un cadre commun pour l'optimisation stochastique et l'online learning. Ce point de vue conduit a de nombreuses extensions du jeu de base. C'est sur l'étude mathématique de ces jeux que se concentre la première partie de cette thèse. La seconde partie est quant à elle dédiée au clustering et plus particulièrement à deux notions importantes: la consistance asymptotique des algorithmes et la stabilité comme méthode de sélection de modèles.
6

Détection et classification de cibles multispectrales dans l'infrarouge

MAIRE, Florian 14 February 2014 (has links) (PDF)
Les dispositifs de protection de sites sensibles doivent permettre de détecter des menaces potentielles suffisamment à l'avance pour pouvoir mettre en place une stratégie de défense. Dans cette optique, les méthodes de détection et de reconnaissance d'aéronefs se basant sur des images infrarouge multispectrales doivent être adaptées à des images faiblement résolues et être robustes à la variabilité spectrale et spatiale des cibles. Nous mettons au point dans cette thèse, des méthodes statistiques de détection et de reconnaissance d'aéronefs satisfaisant ces contraintes. Tout d'abord, nous spécifions une méthode de détection d'anomalies pour des images multispectrales, combinant un calcul de vraisemblance spectrale avec une étude sur les ensembles de niveaux de la transformée de Mahalanobis de l'image. Cette méthode ne nécessite aucune information a priori sur les aéronefs et nous permet d'identifier les images contenant des cibles. Ces images sont ensuite considérées comme des réalisations d'un modèle statistique d'observations fluctuant spectralement et spatialement autour de formes caractéristiques inconnues. L'estimation des paramètres de ce modèle est réalisée par une nouvelle méthodologie d'apprentissage séquentiel non supervisé pour des modèles à données manquantes que nous avons développée. La mise au point de ce modèle nous permet in fine de proposer une méthode de reconnaissance de cibles basée sur l'estimateur du maximum de vraisemblance a posteriori. Les résultats encourageants, tant en détection qu'en classification, justifient l'intérêt du développement de dispositifs permettant l'acquisition d'images multispectrales. Ces méthodes nous ont également permis d'identifier les regroupements de bandes spectrales optimales pour la détection et la reconnaissance d'aéronefs faiblement résolus en infrarouge
7

Détection et classification de cibles multispectrales dans l'infrarouge / Detection and classification of multispectral infrared targets

Maire, Florian 14 February 2014 (has links)
Les dispositifs de protection de sites sensibles doivent permettre de détecter des menaces potentielles suffisamment à l’avance pour pouvoir mettre en place une stratégie de défense. Dans cette optique, les méthodes de détection et de reconnaissance d’aéronefs se basant sur des images infrarouge multispectrales doivent être adaptées à des images faiblement résolues et être robustes à la variabilité spectrale et spatiale des cibles. Nous mettons au point dans cette thèse, des méthodes statistiques de détection et de reconnaissance d’aéronefs satisfaisant ces contraintes. Tout d’abord, nous spécifions une méthode de détection d’anomalies pour des images multispectrales, combinant un calcul de vraisemblance spectrale avec une étude sur les ensembles de niveaux de la transformée de Mahalanobis de l’image. Cette méthode ne nécessite aucune information a priori sur les aéronefs et nous permet d’identifier les images contenant des cibles. Ces images sont ensuite considérées comme des réalisations d’un modèle statistique d’observations fluctuant spectralement et spatialement autour de formes caractéristiques inconnues. L’estimation des paramètres de ce modèle est réalisée par une nouvelle méthodologie d’apprentissage séquentiel non supervisé pour des modèles à données manquantes que nous avons développée. La mise au point de ce modèle nous permet in fine de proposer une méthode de reconnaissance de cibles basée sur l’estimateur du maximum de vraisemblance a posteriori. Les résultats encourageants, tant en détection qu’en classification, justifient l’intérêt du développement de dispositifs permettant l’acquisition d’images multispectrales. Ces méthodes nous ont également permis d’identifier les regroupements de bandes spectrales optimales pour la détection et la reconnaissance d’aéronefs faiblement résolus en infrarouge / Surveillance systems should be able to detect potential threats far ahead in order to put forward a defence strategy. In this context, detection and recognition methods making use of multispectral infrared images should cope with low resolution signals and handle both spectral and spatial variability of the targets. We introduce in this PhD thesis a novel statistical methodology to perform aircraft detection and classification which take into account these constraints. We first propose an anomaly detection method designed for multispectral images, which combines a spectral likelihood measure and a level set study of the image Mahalanobis transform. This technique allows to identify images which feature an anomaly without any prior knowledge on the target. In a second time, these images are used as realizations of a statistical model in which the observations are described as random spectral and spatial deformation of prototype shapes. The model inference, and in particular the prototype shape estimation, is achieved through a novel unsupervised sequential learning algorithm designed for missing data models. This model allows to propose a classification algorithm based on maximum a posteriori probability Promising results in detection as well as in classification, justify the growing interest surrounding the development of multispectral imaging devices. These methods have also allowed us to identify the optimal infrared spectral band regroupments regarding the low resolution aircraft IRS detection and classification

Page generated in 0.0768 seconds