Spelling suggestions: "subject:"approximate 1atrix multiplication"" "subject:"approximate 1atrix multiplications""
1 |
AI Based Methods for Matrix Multiplication in High Resolution Simulations of Radio Access Networks / AI Baserade Metoder för Matris Multiplikationer för högupplösta simuleringar av RadionätverkJohnson, Marcus, Forslund, Herman January 2023 (has links)
The increasing demand for mobile data has placed significant strain on radio access networks (RANs), leading to a continuous need for increased network capacity. In keeping with that, a significant advancement in modern RANs is the ability to utilize several receivers and transmitters, to allow for beamforming. One way to increase the capacity of the network is therefore to optimize the resource allocation by preprocessing the transmitted signals, which involves several costly matrix multiplications (MMs). The aim of the project was to investigate the potential of accelerating Ericsson's RAN simulations by using AI based approximate matrix multiplication (AMM) algorithms. The main focus was on the multiply additionless (MADDNESS) algorithm, a product quantization technique that has achieved speedups of up to 100 times compared to exact MM, and 10 times faster than previous AMM methods. A complex matrix handling version of MADDNESS was implemented in Java and Python respectively, and its speed and accuracy were evaluated against Ericsson's current MM implementation. The proposed implementation did not beat the benchmark with respect to speed, instead resulting in a 4-10 times slowdown in runtime. However, this may largely be due to the fact that the used languages do not allow for complete control over memory resource allocation. As such, the implementations at hand do not incorporate all the crucial features of the algorithm. Particularly, the handicapped version does not fully leverage the vectorization potential, which is one of the key contributors to the speed of the algorithm. Consequently, further improvements are necessary before employing the techniques in an end-to-end implementation. / Den växande efterfrågan på mobildata har ökat belastningen på dagens radionätverk (RAN) och har medfört ett behov av att utvidga dess kapacitet. En betydande innovation inom RAN är beamforming, vilket är förmågan att fokusera digitala signaler mot mottagaren och på så vis öka singalstyrkan. En metod för att öka kapaciteten i ett nätverk är att optimera både kvaliteten av och resursallokeringen mellan nätverkets digitala kanaler, vilket medför tidskrävande matrismultiplikationer. Syftet med denna studie var att utforska om AI-baserade approximativa matrismultiplikationsalgoritmer har potentialen att accelerera Ericssons digitala tvilling-simuleringar. Studien fokuserade i huvudsak på produktkvantiseringsalgoritmen MADDNESS som påvisat potentialen att accelerera exakta matrismultiplikationer med en faktor 100, samt en faktor 10 snabbare än jämförbara approximativa metoder. En modifierad version av MADDNESS, som behandlar komplexa matriser, implementerades i Java samt Python, varefter precisionen och hastigheten utvärderades. Den föreslagna implementationen resulterade i en försämring med avseende på hastigheten med en faktor 4-10 jämfört med Ericssons nuvarande algoritmer. Den föreslagna implementationen saknar effektiv minnesallokering och misslyckas följaktligen att till fullo ta tillvara på vektoriseringspotentialen i MADDNESS. Detta indikerar att det är nödvändigt för ytterligare förbättringar innan algoritmen är användbar i den givna simuleringsmiljön.
|
Page generated in 0.1244 seconds