• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • Tagged with
  • 8
  • 8
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Uma medida de similaridade híbrida para correspondência aproximada de múltiplos padrões / A hybrid similarity measure for multiple approximate pattern matching

Dezembro, Denise Gazotto 07 March 2019 (has links)
A busca aproximada por múltiplos padrões similares é um problema encontrado em diversas áreas de pesquisa, tais como biologia computacional, processamento de sinais e recuperação de informação. Na maioria das vezes, padrões não possuem uma correspondência exata e, portanto, buscam-se padrões aproximados, de acordo com um modelo de erro. Em geral, o modelo de erro utiliza uma função de distância para determinar o quanto dois padrões são diferentes. As funções de distância são baseadas em medidas de similaridade, que são classificadas em medidas de similaridade baseadas em distância de edição, medidas de similaridade baseadas em token e medidas de similaridade híbridas. Algumas dessas medidas extraem um vetor de características de todos os termos que constituem o padrão. A similaridade entre os vetores pode ser calculada pela distância entre cossenos ou pela distância euclidiana, por exemplo. Essas medidas apresentam alguns problemas: tornam-se inviáveis conforme o tamanho do padrão aumenta, não realizam a correção ortográfica ou apresentam problemas de normalização. Neste projeto de pesquisa propõe-se uma nova medida de similaridade híbrida que combina TF-IDF Weighting e uma medida de similaridade baseada em distância de edição para estimar a importância de um termo dentro de um padrão na tarefa de busca textual. A medida DGD não descarta completamente os termos que não fazem parte do padrão, mas atribui um peso baseando-se na alta similaridade deste termo com outro que está no padrão e com a média de TF-IDF Weighting do termo na coleção. Alguns experimentos foram conduzidos mostrando o comportamento da medida proposta comparada com as outras existentes na literatura. Tem-se como recomendação geral o limiar de {tf-idf+cosseno, Jaccard, Soft tf-idf} 0,60 e {Jaro, Jaro-Winkler, Monge-Elkan} 0,90 para detecção de padrões similares. A medida de similaridade proposta neste trabalho (DGD+cosseno) apresentou um melhor desempenho quando comparada com tf idf+cosseno e Soft tf-idf na identificação de padrões similares e um melhor desempenho do que as medidas baseadas em distância de edição (Jaro e JaroWinkler) na identificação de padrões não similares. Atuando como classificador, em geral, a medida de similaridade híbrida proposta neste trabalho (DGD+cosseno) apresentou um melhor desempenho (embora não sinificativamente) do que todas as outras medidas de similaridade analisadas, o que se mostra como um resultado promissor. Além disso, é possível concluir que o melhor valor de a ser usado, onde corresponde ao limiar do valor da medida de similaridade secundária baseada em distância de edição entre os termos do padrão, corresponde a 0,875. / Multiple approximate pattern matching is a challenge found in many research areas, such as computational biology, signal processing and information retrieval. Most of the time, a pattern does not have an exact match in the text, and therefore an error model becomes necessary to search for an approximate pattern match. In general, the error model uses a distance function to determine how different two patterns are. Distance functions use similarity measures which can be classified in token-based, edit distance based and hybrid measures. Some of these measures extract a vector of characteristics from all terms in the pattern. Then, the similarity between vectors can be calculated by cosine distance or by euclidean distance, for instance. These measures present some problems: they become infeasible as the size of the pattern increases, do not perform the orthographic correction or present problems of normalization. In this research, we propose a new hybrid similarity metric, named DGD, that combines TF-IDF Weighting and a edit distance based measure to estimate the importance of a term within patterns. The DGD measure doesnt completely rule out terms that are not part of the pattern, but assigns a weight based on the high similarity of this term to another that is in the pattern and with the TF-IDF Weighting mean of the term in the collection. Experiment were conducted showing the soundness of the proposed metric compared to others in the literature. The general recommendation is the threshold of {tf-idf+cosseno, Jaccard, Soft tf-idf} 0.60 and {Jaro, Jaro-Winkler, Monge-Elkan} 0.90 for detection of similar patterns. The similarity measure proposed in this work (DGD + cosine) presented a better performance when compared with tf-idf+cosine and Soft tf-idf in the identification of similar patterns and a better performance than the edit distance based measures (Jaro and Jaro-Winkler) in identifying non-similar patterns. As a classifier, in general, the hybrid similarity measure proposed in this work (DGD+cosine) performed better (although not significantly) than all other similarity measures analyzed, which is shown as a promising result . In addition, it is possible to conclude that the best value of to be used, where is the theshold of the value of the secondary similarity measure based on edit distance between the terms of the pattern, corresponds to 0.875.
2

Improving the Efficiency and Robustness of Intrusion Detection Systems

Fogla, Prahlad 20 August 2007 (has links)
With the increase in the complexity of computer systems, existing security measures are not enough to prevent attacks. Intrusion detection systems have become an integral part of computer security to detect attempted intrusions. Intrusion detection systems need to be fast in order to detect intrusions in real time. Furthermore, intrusion detection systems need to be robust against the attacks which are disguised to evade them. We improve the runtime complexity and space requirements of a host-based anomaly detection system that uses q-gram matching. q-gram matching is often used for approximate substring matching problems in a wide range of application areas, including intrusion detection. During the text pre-processing phase, we store all the q-grams present in the text in a tree. We use a tree redundancy pruning algorithm to reduce the size of the tree without losing any information. We also use suffix links for fast linear-time q-gram search during query matching. We compare our work with the Rabin-Karp based hash-table technique, commonly used for multiple q-gram matching. To analyze the robustness of network anomaly detection systems, we develop a new class of polymorphic attacks called polymorphic blending attacks, that can effectively evade payload-based network anomaly IDSs by carefully matching the statistics of the mutated attack instances to the normal profile. Using PAYL anomaly detection system for our case study, we show that these attacks are practically feasible. We develop a formal framework which is used to analyze polymorphic blending attacks for several network anomaly detection systems. We show that generating an optimal polymorphic blending attack is NP-hard for these anomaly detection systems. However, we can generate polymorphic blending attacks using the proposed approximation algorithms. The framework can also be used to improve the robustness of an intrusion detector. We suggest some possible countermeasures one can take to improve the robustness of an intrusion detection system against polymorphic blending attacks.
3

Efficient fuzzy type-ahead search on big data using a ranked trie data structure

Bergman, John January 2018 (has links)
The efficiency of modern search engines depends on how well they present typo-corrected results to a user while typing. So-called fuzzy type-ahead search combines fuzzy string matching and search-as-you-type functionality, and creates a powerful tool for exploring indexed data. Current fuzzy type-ahead search algorithms work well on small data sets, but for big data of social networking services such as Facebook, e-commerce sites such as Amazon, or media streaming services such as YouTube, responsive fuzzy type-ahead search remains a great challenge. This thesis describes a method that enables responsive type-ahead search combined with fuzzy string matching on big data by keeping the search time optimal for human interaction at the expense of lower accuracy for less popular records when a query contains typos. This makes the method effective for e-commerce and media services where the popularity of search terms is a result of human behaviour and thus often follow a power-law distribution. / Effektiviteten hos moderna sökmotorer beror på hur väl de presenterar rättstavade resultat för en användare medan en sökning skrivs. Så kallad fuzzy type-ahead sök kombinerar approximativ strängmatchning och sök-medan-du-skriver funktionalitet, vilket skapar ett kraftfullt verktyg för att utforska data. Dagens algoritmer för fuzzy type-ahead sök fungerar väl för små mängder data, men för data i storleksordningen “big data” från t.ex sociala nätverkstjänster så som Facebook, e-handelssidor så som Amazon, eller media tjänster så som YouTube, är en responsiv fuzzy type-ahead sök ännu en stor utmaning. Denna avhandling beskriver en metod som möjliggör responsiv type-ahead sök kombinerat med approximativ strängmatchning för big data genom att hålla söktiden optimal för mänsklig interaktion på bekostnad av lägre precision för mindre populär information när en sök-förfrågan innehåller felstavningar. Detta gör metoden effektiv för e-handel och mediatjänster där populariteten av sök-termer är ett resultat av mänskligt beteende vilket ofta följer en potens-lag distribution.
4

Offline Approximate String Matching forInformation Retrieval : An experiment on technical documentation

Dubois, Simon January 2013 (has links)
Approximate string matching consists in identifying strings as similar even ifthere is a number of mismatch between them. This technique is one of thesolutions to reduce the exact matching strictness in data comparison. In manycases it is useful to identify stream variation (e.g. audio) or word declension (e.g.prefix, suffix, plural). Approximate string matching can be used to score terms in InformationRetrieval (IR) systems. The benefit is to return results even if query terms doesnot exactly match indexed terms. However, as approximate string matchingalgorithms only consider characters (nor context neither meaning), there is noguarantee that additional matches are relevant matches. This paper presents the effects of some approximate string matchingalgorithms on search results in IR systems. An experimental research design hasbeen conducting to evaluate such effects from two perspectives. First, resultrelevance is analysed with precision and recall. Second, performance is measuredthanks to the execution time required to compute matches. Six approximate string matching algorithms are studied. Levenshtein andDamerau-Levenshtein computes edit distance between two terms. Soundex andMetaphone index terms based on their pronunciation. Jaccard similarity calculatesthe overlap coefficient between two strings. Tests are performed through IR scenarios regarding to different context,information need and search query designed to query on a technicaldocumentation related to software development (man pages from Ubuntu). Apurposive sample is selected to assess document relevance to IR scenarios andcompute IR metrics (precision, recall, F-Measure). Experiments reveal that all tested approximate matching methods increaserecall on average, but, except Metaphone, they also decrease precision. Soundexand Jaccard Similarity are not advised because they fail on too many IR scenarios.Highest recall is obtained by edit distance algorithms that are also the most timeconsuming. Because Levenshtein-Damerau has no significant improvementcompared to Levenshtein but costs much more time, the last one is recommendedfor use with a specialised documentation. Finally some other related recommendations are given to practitioners toimplement IR systems on technical documentation.
5

Filtros para a busca e extração de padrões aproximados em cadeias biológicas / Filter Algorithms for Approximate Patterns Matching and Extraction from Biological Strings

Soares Neto, Domingos 10 September 2008 (has links)
Esta dissertação de mestrado aborda formulações computacionais e algoritmos para a busca e extração de padrões em cadeias biológicas. Em particular, o presente texto concentra-se nos dois problemas a seguir, considerando-os sob as distâncias de Hamming e Levenshtein: a) como determinar os locais nos quais um dado padrão ocorre de modo aproximado em uma cadeia fornecida; b) como extrair padrões que ocorram de modo aproximado em um número significativo de cadeias de um conjunto fornecido. O primeiro problema, para o qual já existem diversos algoritmos polinomiais, tem recebido muita atenção desde a década de 60, e ganhou novos ares com o advento da biologia computacional, nos idos dos anos 80, e com a popularização da Internet e seus mecanismos de busca: ambos os fenômenos trouxeram novos obstáculos a serem superados, em razão do grande volume de dados e das bastante justas restrições de tempo inerentes a essas aplicações. O segundo problema, de surgimento um pouco mais recente, é intrinsicamente desafiador, em razão de sua complexidade computacional, do tamanho das entradas tratadas nas aplicações mais comuns e de sua dificuldade de aproximação. Também é de chamar a atenção o seu grande potencial de aplicação. Neste trabalho são apresentadas formulações adequadas dos problemas abordados, assim como algoritmos e estruturas de dados essenciais ao seu estudo. Em especial, estudamos a extremamente versátil árvore dos sufixos, assim como uma de suas generalizações e sua estrutura irmã: o vetor dos sufixos. Grande parte do texto é dedicada aos filtros baseados em q-gramas para a busca aproximada de padrões e algumas de suas mais recentes variações. Estão cobertos os algoritmos bit-paralelos de Myers e Baeza-Yates-Gonnet para a busca de padrões; os algoritmos de Sagot para a extração de padrões; os algoritmos de filtragem de Ukkonen, Jokinen-Ukkonen, Burkhardt-Kärkkäinen, entre outros. / This thesis deals with computational formulations and algorithms for the extraction and search of patterns from biological strings. In particular, the present text focuses on the following problems, both considered under Hamming and Levenshtein distances: 1. How to find the positions where a given pattern approximatelly occurs in a given string; 2. How to extract patterns which approximatelly occurs in a certain number of strings from a given set. The first problem, for which there are many polinomial time algorithms, has been receiving a lot of attention since the 60s and entered a new era of discoveries with the advent of computational biology, in the 80s, and the widespread of the Internet and its search engines: both events brought new challenges to be faced by virtue of the large volume of data usually held by such applications and its time constraints. The second problem, much younger, is very challenging due to its computational complexity, approximation hardness and the size of the input data usually held by the most common applications. This problem is also very interesting due to its potential of application. In this work we show computational formulations, algorithms and data structures for those problems. We cover the bit-parallel algorithms of Myers, Baeza-Yates-Gonnet and the Sagots algorithms for patterns extraction. We also cover here the oustanding versatile suffix tree, its generalised version, and a similar data structure: the suffix array. A significant part of the present work focuses on q-gram based filters designed to solve the approximate pattern search problem. More precisely, we cover the filter algorithms of Ukkonen, Jokinen-Ukkonen and Burkhardt-Kärkkäinen, among others.
6

Filtros para a busca e extração de padrões aproximados em cadeias biológicas / Filter Algorithms for Approximate Patterns Matching and Extraction from Biological Strings

Domingos Soares Neto 10 September 2008 (has links)
Esta dissertação de mestrado aborda formulações computacionais e algoritmos para a busca e extração de padrões em cadeias biológicas. Em particular, o presente texto concentra-se nos dois problemas a seguir, considerando-os sob as distâncias de Hamming e Levenshtein: a) como determinar os locais nos quais um dado padrão ocorre de modo aproximado em uma cadeia fornecida; b) como extrair padrões que ocorram de modo aproximado em um número significativo de cadeias de um conjunto fornecido. O primeiro problema, para o qual já existem diversos algoritmos polinomiais, tem recebido muita atenção desde a década de 60, e ganhou novos ares com o advento da biologia computacional, nos idos dos anos 80, e com a popularização da Internet e seus mecanismos de busca: ambos os fenômenos trouxeram novos obstáculos a serem superados, em razão do grande volume de dados e das bastante justas restrições de tempo inerentes a essas aplicações. O segundo problema, de surgimento um pouco mais recente, é intrinsicamente desafiador, em razão de sua complexidade computacional, do tamanho das entradas tratadas nas aplicações mais comuns e de sua dificuldade de aproximação. Também é de chamar a atenção o seu grande potencial de aplicação. Neste trabalho são apresentadas formulações adequadas dos problemas abordados, assim como algoritmos e estruturas de dados essenciais ao seu estudo. Em especial, estudamos a extremamente versátil árvore dos sufixos, assim como uma de suas generalizações e sua estrutura irmã: o vetor dos sufixos. Grande parte do texto é dedicada aos filtros baseados em q-gramas para a busca aproximada de padrões e algumas de suas mais recentes variações. Estão cobertos os algoritmos bit-paralelos de Myers e Baeza-Yates-Gonnet para a busca de padrões; os algoritmos de Sagot para a extração de padrões; os algoritmos de filtragem de Ukkonen, Jokinen-Ukkonen, Burkhardt-Kärkkäinen, entre outros. / This thesis deals with computational formulations and algorithms for the extraction and search of patterns from biological strings. In particular, the present text focuses on the following problems, both considered under Hamming and Levenshtein distances: 1. How to find the positions where a given pattern approximatelly occurs in a given string; 2. How to extract patterns which approximatelly occurs in a certain number of strings from a given set. The first problem, for which there are many polinomial time algorithms, has been receiving a lot of attention since the 60s and entered a new era of discoveries with the advent of computational biology, in the 80s, and the widespread of the Internet and its search engines: both events brought new challenges to be faced by virtue of the large volume of data usually held by such applications and its time constraints. The second problem, much younger, is very challenging due to its computational complexity, approximation hardness and the size of the input data usually held by the most common applications. This problem is also very interesting due to its potential of application. In this work we show computational formulations, algorithms and data structures for those problems. We cover the bit-parallel algorithms of Myers, Baeza-Yates-Gonnet and the Sagots algorithms for patterns extraction. We also cover here the oustanding versatile suffix tree, its generalised version, and a similar data structure: the suffix array. A significant part of the present work focuses on q-gram based filters designed to solve the approximate pattern search problem. More precisely, we cover the filter algorithms of Ukkonen, Jokinen-Ukkonen and Burkhardt-Kärkkäinen, among others.
7

Přibližné vyhledávání řetězců v předzpracovaných dokumentech / Approximate String Matching in Preprocessed Documents

Toth, Róbert January 2014 (has links)
This thesis deals with the problem of approximate string matching, also called string matching allowing errors. The thesis targets the area of offline algorithms, which allows very fast pattern matching thanks to index created during initial text preprocessing phase. Initially, we will define the problem itself and demonstrate variety of its applications, followed by short survey of different approaches to cope with this problem. Several existing algorithms based on suffix trees will be explained in detail and new hybrid algorithm will be proposed. Algorithms wil be implemented in C programming language and thoroughly compared in series of experiments with focus on newly presented algorithm.
8

Přibližná shoda znakových řetězců a její aplikace na ztotožňování metadat vědeckých publikací / Approximate equality of character strings and its application to record linkage in metadata of scientific publications

Dobiášovský, Jan January 2020 (has links)
The thesis explores the application of approximate string matching in scientific publication record linkage process. An introduction to record matching along with five commonly used metrics for string distance (Levenshtein, Jaro, Jaro-Winkler, Cosine distances and Jaccard coefficient) are provided. These metrics are applied on publication metadata from V3S current research information system of the Czech Technical University in Prague. Based on the findings, optimal thresholds in the F​1​, F​2​ and F​3​-measures are determined for each metric.

Page generated in 0.1374 seconds