• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 332
  • 27
  • 9
  • 2
  • Tagged with
  • 381
  • 381
  • 348
  • 342
  • 69
  • 57
  • 55
  • 53
  • 52
  • 46
  • 46
  • 45
  • 44
  • 42
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Exposição experimental ao fungicida agrícola difenoconazol e seus efeitos sobre a qualidade espermática. / Experimental exposure to the fungicide diphenoconazole and its effects on sperm quality.

PEREIRA, Viviane Ribas 14 April 2018 (has links)
Submitted by Jakeline Ortega (jakortega@unoeste.br) on 2018-09-21T20:10:17Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Viviane Ribas Pereira PDF.pdf: 2053033 bytes, checksum: 480912202f53c9af07d7ace2942faf4f (MD5) / Made available in DSpace on 2018-09-21T20:10:17Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Viviane Ribas Pereira PDF.pdf: 2053033 bytes, checksum: 480912202f53c9af07d7ace2942faf4f (MD5) Previous issue date: 2018-04-14 / Difenoconazole, a fungicide of the triazoles group, is widely used during the cultivation of passion fruit, orange, strawberry, papaya and other crops. Respiratory return and in the public health space, as it can affect the population through the consumption of contaminated food. Thus, the present study was evaluated as an experimental challenge on sperm quality, from an experimental model. For this, Wistar males (45 days) were divided into 4 experimental groups (n = 10 / group): control and exposed to 5 (DA), 10 (DB) and 50 (DC) mg / kg / day of diphenoconazole, via gavage for 30 consecutive days. During the exposure period, the animals were followed for clinical signs of toxicity, water and feed intake and body weight. Throughout this period, the reproductive organs, liver and kidneys were collected and weighed. Spermatozoa were submitted to evaluation of motility, morphology, vitality, acrosome and Surface Enhanced Raman Spectroscopy (SERS). The testis and epididymis were scaled for sperm counts. For the original network learning test, the Bayes classifier (BAY), K-Nearest Neighbors (K-NN) and Support Vector Machine (SVM). The results were compared by ANOVA with Tukey posterior test, and the Kruskall-Wallis test with Dunn a posteriori, considering p <0.05. Body weight and reproductive organs, liver and culture are not altered during exposure to the fungicide. The progressive motility, the acrosomal membrane and the percentage of spermatozoa were the variables used in the variables DB and DC in relation to the joint control. Already vitality was only doubled in the DC group. In addition, sperm indices were not tested and were reduced in the three groups exposed. SERS measurements resulted in changes in the sperm bands of the DC group in relation to the control. The computational analysis identified the presence of a standard for the experimental groups with good classification in the SVM test (≥ 80% accuracy). Thus, the exposure of Wistar rats to doses of the difenoconazole fungicide may be reduced by reducing the sperm quality, with the classification pattern of exposure groups. / O difenoconazol, um fungicida do grupo dos triazóis, é amplamente utilizado durante o cultivo de maracujá, laranja, morango, mamão e em outras culturas. Sua intensa utilização traz preocupações ambientais e no âmbito da saúde pública, visto que, pode afetar a população através do consumo de alimentos contaminados. Desta forma, o objetivo do presente estudo foi avaliar os efeitos da exposição ao difenoconazol sobre a qualidade espermática, de um modelo experimental. Para isso, foram utilizados ratos machos Wistar (45 dias) divididos em 4 grupos experimentais (n=10/grupo): controle e expostos a 5 (DA), 10 (DB) e 50 (DC) mg/kg/dia de difenoconazol, via gavagem por 30 dias consecutivos. Durante o período de exposição, os animais foram acompanhados em relação aos sinais clínicos de toxicidade, consumo de água e ração e peso corpóreo. Ao término deste período, os órgãos reprodutivos, fígado e rins foram coletados e pesados. Os espermatozoides foram submetidos à avaliação da motilidade, morfologia, vitalidade, integridade acrossomal e análise de Espectroscopia de Espalhamento Raman Amplificado em Superfície (SERS). O testículo e o epidídimo direito foram coletados para as contagens espermáticas. Para o teste de aprendizado de máquina foram utilizados quatro algoritmos de reconhecimento de padrões: Artificial Neural Network (ANN), Bayes Classifier (BAY), K-Nearest Neighbors (K-NN) e Support Vector Machine (SVM). Os resultados foram comparados por ANOVA com o teste “a posteriori” de Tukey, e o teste de Kruskall-Wallis, com “a posteriori” de Dunn, considerando p<0,05. O peso corpóreo e dos órgãos reprodutivos, fígado e rins não sofreram alterações significativas após a exposição ao fungicida. A motilidade progressiva, a integridade da membrana acrossomal e a porcentagem de espermatozoides morfologicamente normais foram reduzidas nos grupos DB e DC em relação ao grupo controle. Já a vitalidade foi reduzida apenas no grupo DC. Além disso, os números de espermatozoides no testículo e no segmento cabeça/corpo do epidídimo e a produção diária de espermatozoides foram reduzidos nos três grupos expostos. As medidas de SERS mostraram alterações nas bandas dos espectros dos espermatozoides do grupo DC em relação ao controle. A análise computacional identificou a presença de um padrão para os grupos experimentais com boa classificação no teste SVM (≥ 80% de acurácia). Assim, concluiu-se que a exposição de ratos Wistar a diferentes doses do fungicida difenoconazol pode reduzir a qualidade espermática, com reconhecível padrão de classificação de grupos de exposição.
132

Modelos computacionais prognósticos de lesões traumáticas do plexo braquial em adultos / Prognostic computational models for traumatic brachial plexus injuries in adults

Luciana de Melo e Abud 20 June 2018 (has links)
Estudos de prognóstico clínico consistem na predição do curso de uma doença em pacientes e são utilizados por profissionais da saúde com o intuito de aumentar as chances ou a qualidade de sua recuperação. Sob a perspectiva computacional, a criação de um modelo prognóstico clínico é um problema de classificação, cujo objetivo é identificar a qual classe (dentro de um conjunto de classes predefinidas) uma nova amostra pertence. Este projeto visa a criar modelos prognósticos de lesões traumáticas do plexo braquial, um conjunto de nervos que inervam os membros superiores, utilizando dados de pacientes adultos com esse tipo de lesão. Os dados são provenientes do Instituto de Neurologia Deolindo Couto (INDC) da Universidade Federal do Rio de Janeiro (UFRJ) e contêm dezenas de atributos clínicos coletados por meio de questionários eletrônicos. Com esses modelos prognósticos, deseja-se identificar de maneira automática os possíveis preditores do curso desse tipo de lesão. Árvores de decisão são classificadores frequentemente utilizados para criação de modelos prognósticos, por se tratarem de um modelo transparente, cujo resultado pode ser examinado e interpretado clinicamente. As Florestas Aleatórias, uma técnica que utiliza um conjunto de árvores de decisão para determinar o resultado final da classificação, podem aumentar significativamente a acurácia e a generalização dos modelos gerados, entretanto ainda são pouco utilizadas na criação de modelos prognósticos. Neste projeto, exploramos a utilização de florestas aleatórias nesse contexto, bem como a aplicação de métodos de interpretação de seus modelos gerados, uma vez que a transparência do modelo é um aspecto particularmente importante em domínios clínicos. A estimativa de generalização dos modelos resultantes foi feita por meio de métodos que viabilizam sua utilização sobre um número reduzido de instâncias, uma vez que os dados relativos ao prognóstico são provenientes de 44 pacientes do INDC. Além disso, adaptamos a técnica de florestas aleatórias para incluir a possível existência de valores faltantes, que é uma característica presente nos dados utilizados neste projeto. Foram criados quatro modelos prognósticos - um para cada objetivo de recuperação, sendo eles a ausência de dor e forças satisfatórias avaliadas sobre abdução do ombro, flexão do cotovelo e rotação externa no ombro. As acurácias dos modelos foram estimadas entre 77% e 88%, utilizando o método de validação cruzada leave-one-out. Esses modelos evoluirão com a inclusão de novos dados, provenientes da contínua chegada de novos pacientes em tratamento no INDC, e serão utilizados como parte de um sistema de apoio à decisão clínica, de forma a possibilitar a predição de recuperação de um paciente considerando suas características clínicas. / Studies of prognosis refer to the prediction of the course of a disease in patients and are employed by health professionals in order to improve patients\' recovery chances and quality. Under a computational perspective, the creation of a prognostic model is a classification task that aims to identify to which class (within a predefined set of classes) a new sample belongs. The goal of this project is the creation of prognostic models for traumatic injuries of the brachial plexus, a network of nerves that innervates the upper limbs, using data from adult patients with this kind of injury. The data come from the Neurology Institute Deolindo Couto (INDC) of Rio de Janeiro Federal University (UFRJ) and they are characterized by dozens of clinical features that are collected by means of electronic questionnaires. With the use of these prognostic models we intended to automatically identify possible predictors of the course of brachial plexus injuries. Decision trees are classifiers that are frequently used for the creation of prognostic models since they are a transparent technique that produces results that can be clinically examined and interpreted. Random Forests are a technique that uses a set of decision trees to determine the final classification results and can significantly improve model\'s accuracy and generalization, yet they are still not commonly used for the creation of prognostic models. In this project we explored the use of random forests for that purpose, as well as the use of interpretation methods for the resulting models, since model transparency is an important aspect in clinical domains. Model assessment was achieved by means of methods whose application over a small set of samples is suitable, since the available prognostic data refer to only 44 patients from INDC. Additionally, we adapted the random forests technique to include missing data, that are frequent among the data used in this project. Four prognostic models were created - one for each recovery goal, those being absence of pain and satisfactory strength evaluated over shoulder abduction, elbow flexion and external shoulder rotation. The models\' accuracies were estimated between 77% and 88%, calculated through the leave-one-out cross validation method. These models will evolve with the inclusion of new data from new patients that will arrive at the INDC and they will be used as part of a clinical decision support system, with the purpose of prediction of a patient\'s recovery considering his or her clinical characteristics.
133

Aplicação em tempo real de técnicas de aprendizado de máquina no Snort IDS /

Utimura, Luan Nunes January 2020 (has links)
Orientador: Kelton Augusto Pontara da Costa / Resumo: À medida que a Internet cresce com o passar dos anos, é possível observar um aumento na quantidade de dados que trafegam nas redes de computadores do mundo todo. Em um contexto onde o volume de dados encontra-se em constante renovação, sob a perspectiva da área de Segurança de Redes de Computadores torna-se um grande desafio assegurar, em termos de eficácia e eficiência, os sistemas computacionais da atualidade. Dentre os principais mecanismos de segurança empregados nestes ambientes, destacam-se os Sistemas de Detecção de Intrusão em Rede. Muito embora a abordagem de detecção por assinatura seja suficiente no combate de ataques conhecidos nessas ferramentas, com a eventual descoberta de novas vulnerabilidades, faz-se necessário a utilização de abordagens de detecção por anomalia para amenizar o dano de ataques desconhecidos. No campo acadêmico, diversos trabalhos têm explorado o desenvolvimento de abordagens híbridas com o intuito de melhorar a acurácia dessas ferramentas, com o auxílio de técnicas de Aprendizado de Máquina. Nesta mesma linha de pesquisa, o presente trabalho propõe a aplicação destas técnicas para a detecção de intrusão em um ambiente tempo real mediante uma ferramenta popular e amplamente utilizada, o Snort. Os resultados obtidos mostram que em determinados cenários de ataque, a abordagem de detecção baseada em anomalia pode se sobressair em relação à abordagem de detecção baseada em assinatura, com destaque às técnicas AdaBoost, Florestas Aleatórias, Árvor... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: As the Internet grows over the years, it is possible to observe an increase in the amount of data that travels on computer networks around the world. In a context where data volume is constantly being renewed, from the perspective of the Network Security area it becomes a great challenge to ensure, in terms of effectiveness and efficiency, today’s computer systems. Among the main security mechanisms employed in these environments, stand out the Network Intrusion Detection Systems. Although the signature-based detection approach is sufficient to combat known attacks in these tools, with the eventual discovery of new vulnerabilities, it is necessary to use anomaly-based detection approaches to mitigate the damage of unknown attacks. In the academic field, several works have explored the development of hybrid approaches in order to improve the accuracy of these tools, with the aid of Machine Learning techniques. In this same line of research, the present work proposes the application of these techniques for intrusion detection in a real time environment using a popular and widely used tool, the Snort. The obtained results shows that in certain attack scenarios, the anomaly-based detection approach may outperform the signature-based detection approach, with emphasis on the techniques AdaBoost, Random Forests, Decision Tree and Linear Support Vector Machine. / Mestre
134

Modelo de classificação multivariável para identificação de enchentes: um estudo empírico no sistema de monitoramento de rios e-noe / Multivariate classification model for identification of floods: an empirical study in the monitoring of e-noe rivers

Brito, Lucas Augusto Vieira 17 May 2019 (has links)
Nas últimas décadas, as enchentes vêm causando muitos problemas nas cidades, principalmente em grandes centros urbanos devido à alteração da paisagem natural e à impermeabilização do terreno. Geralmente esses eventos estão relacionados a eventos extremos de chuva, junto a um insuficiente sistema de drenagem para dar vazão ao escoamento gerado. Um ponto agravante - que colabora com o aumento da magnitude das enchentes - é o crescimento populacional desordenado. Assim, faltam políticas públicas, como um estudo prévio da região para alocação de pessoas de maneira eficiente. Na literatura, existem algumas soluções, como o uso da tecnologia de Redes de Sensores Sem Fio (RSSF), que podem ser implantadas no cenário urbano como forma de monitoramento de enchentes. Nesse cenário, um dos principais desafios para elaboração desses sistemas é emitir alertas para que desastres maiores sejam evitados. Porém, a utilização de uma única fonte de dados, unida a possíveis falhas que as RSSFs podem sofrer, acaba comprometendo o monitoramento e o alerta de enchentes. Uma outra abordagem é a utilização de modelos hidrológicos criados a partir de um estudos prévios do solo e da estrutura da bacia, pois eles são capazes de reproduzir o comportamento do escoamento da bacia a partir de séries temporais como entrada. Existem muitos modelos hidrológicos com diversas estruturas de dados e detalhamento da bacia hidrográfica, dos mais complexos - capazes de reproduzir a física dos processos de infiltração e o escoamento de água - até os mais simplificados, que utilizam parâmetros de ajustes que não são necessariamente relacionados aos fenômenos físicos envolvidos nesses processos. Porém, muitos desses modelos precisam de uma grande quantidade de dados para o seu desenvolvimento, tornando-os muito complexos e custosos. Dessa forma, esta dissertação de mestrado apresenta um modelo de identificação de enchentes baseado na mineração de dados e aprendizado de máquina, com o intuito de diminuir a complexidade e o custo dos modelos hidrológicos e a dependabilidade de uma única variável de sistemas de RSSF, além da vantagem de ser facilmente generalizável sem perder a eficiência na identificação de enchente. As variáveis utilizadas para o desenvolvimento do modelo são os dados de estações meteorológicas e o nível de água do canal. Assim, é utilizada a metodologia do Cross Industry Standard Process for Data Mining (CRISP-DM) para a mineração dos dados, por ser uma técnica objetiva que contém as melhores práticas para a exploração dos dados. Os resultados revelam que o modelo desenvolvido obteve uma acurácia de aproximadamente 87:8%, com o algoritmo Random_Forest. Além disso, nos testes de adaptabilidade e comparação com o Storm Water Management Model (SWMM)-um modelo hidrológico amplamente conhecido na literatura-, em uma mesma região de estudo, o modelo desenvolvido obteve resultados relevantes no contexto de identificação de enchente. Isso mostra que o modelo desenvolvido possui grande potencial de aplicação, principalmente por sua simplicidade de implementação e replicação sem comprometer a qualidade de identificação da ocorrência de enchentes. Consequentemente, algumas das principais contribuições deste trabalho são: (i) o modelo multivariável de identificação de enchente diminui a complexidade, custos e tempo de desenvolvimento em relação aos modelos hidrológicos e; (ii) o avanço do estado da arte em comparação aos trabalhos computacionais, por não depender de variáveis fixas e utilizar multivariáveis para identificar o padrão de enchentes. / In recent decades, floods have caused many problems in cities, especially in large urban centers due to the alteration of the natural landscape and the waterproofing of the terrain. Generally, these events are related to extreme rainfall events, together with an insufficient drainage system to give flow to the flow generated. An aggravating point - which contributes to the increase in flood magnitude - is disordered population growth. Thus, public policies are lacking, such as a prior study of the region for the efficient allocation of people. In the literature, there are some solutions, such as the use of the Wireless Sensor Networks (WSN) technology, which can be implemented in the urban scene as a form of flood monitoring. In this scenario, one of the major challenges in designing these systems is to issue alerts so that major disasters are avoided. However, the use of a single data source, coupled with the possible flaws that WSNs may suffer, endangers flood monitoring and alertness. Another approach is the use of hydrological models created from previous soil studies and basin structure, as they are able to reproduce basin flow behavior from time series as input. There are many hydrological models with diverse data structures and details of the hydrographic basin, of the most complex - capable of reproducing the physics of the infiltration processes and the water flow - to the more simplified, that use parameters of adjustments that are not necessarily related to the phenomena involved in these processes. However, many of these models need a lot of data for their development, making them very complex and costly. This dissertation presents a flood identification model based on data mining and machine learning in order to reduce the complexity and cost of hydrological models and the dependability of a single variable of WSN systems. of the advantage of being easily generalizable without losing efficiency in the identification of flood. The variables used for the development of the model are the data of meteorological stations and the water level of the channel. Thus, the Cross Industry Standard Process for Data Mining (CRISP-DM) methodology for data mining is used, since it is an objective technique that contains the best practices for data mining. The results show that the developed model obtained an accuracy of approximately 87.8%, with the algorithm Random_Forest. In addition, in the adaptive and comparative tests with the Storm Water Management Model (SWMM), a hydrological model widely known in the literature, in the same region of study, the developed model obtained relevant results in the context of flood identification. This shows that the developed model has great application potential, mainly for its simplicity of implementation and replication without compromising the quality of the identification of the occurrence of floods. Consequently, some of the main contributions of this work are: (i) the multivariate model of flood identification decreases the complexity, costs and development time in relation to the hydrological models; (ii) the advance of the state of the art in comparison to the computational works, because it does not depend on fixed variables and use multivariable to identify the flood pattern.
135

Desenvolvimento de uma instrumentação de captura de imagens in situ para estudo da distribuição vertical do plâncton / Development of an in situ image capture instrumentation to study the vertical distri bution of plankton

Medeiros, Maia Gomes 18 December 2017 (has links)
Desenvolveu-se, pela Universidade de São Paulo, o protótipo de um equipamento submersível de captura para estudo de plâncton. Baseado na técnica shadowgraph, é formado por um feixe de LED infravermelho colimado e uma câmera de alta resolução, executados por um sistema de controle automatizado. Foram utilizados softwares de visão computacional desenvolvidos pelo Laboratório de Sistemas Planctônicos (LAPS) que executam várias tarefas, incluindo a captura e segmentação de imagens e a extração de informações com o intuito de classificar automaticamente novos conjuntos de regiões de interesse (ROIs). O teste de aprendizado de máquina contou com 57 mil quadros e 230 mil ROIs e teve, como base, dois algoritmos de classificação: o Support Vector Machine (SVM) e o Random Forest (RF). O conjunto escolhido para o treinamento inicial continha 15 classes de fito e zooplâncton, às quais foi atribuído um subconjunto de 5 mil ROIs. Os ROIs foram separados em grandes classes de, pelo menos, 100 ROIs cada. O resultado, calculado por meio do algoritmo de aprendizagem RF e SVM e fundamentado no método de validação cruzada, teve uma precisão de 0,78 e 0,79, respectivamente. O conjunto de imagens é proveniente de Ubatuba, no estado de São Paulo. Os perfis verticais elaborados apresentaram diferentes padrões de distribuição de partículas. O instrumento tem sido útil para a geração de dados espacialmente refinados em ecossistemas costeiros e oceânicos. / The University of São Paulo developed an underwater image capture system prototype to study plankton. Based on the shadowgraphic image technique, the system consists of a collimated infrared LED beam and a high-resolution camera, both executed by an automated control system. Computer vision software developed by the research laboratory was used to perform various tasks, including image capturing; image segmentation; and extract information to automatic classify news regions of interest (ROIs). The machine learning test had 57,000 frames and 230,000 ROIs, based on two classification algorithms: Support Vector Machine (SVM) and Random Forest (RF). The chosen set of the initial training had 15 classes of phytoplankton and zooplankton, which was assigned a subset of 5,000 ROIs. Big classes of, at least, 100 ROIs each were organized. The result, calculated by the RF and SVM learning algorithm and based on the cross-validation method, had a 0.78 and 0.79 precision score, respectively. The image package comes from Ubatuba, in the state of São Paulo. The vertical profiles elaborated presented different particles distribution patterns. The instrument has been useful for spatially refined data generation in coastal and oceanic ecosystems.
136

Abordagem simbólica de aprendizado de máquina na recuperação automática de artigos científicos a partir de web / Symbolic approach of machine learning in the scientific article automatic recovery from the web

Brasil, Christiane Regina Soares 07 April 2006 (has links)
Atualmente, devido ao incessante aumento dos documentos científicos disponíveis na rede mundial de computadores, as ferrametas de busca tornaram-se um importante auxílio para recuperação de informação a partir da Internet em todas as áreas de conhecimento para pesquisadores e usuários. Entretanto, as atuais ferramentas de busca disponíveis selecionam uma enorme lista de páginas, cabendo ao usuário a tarefa final de escolher aquelas que realmente são relevantes a sua pesquisa. Assim, é importante o desenvolvimento de técnicas e ferramentas que não apenas retornem uma lista de possíveis documentos relacionados com a consulta apresentada pelo usuário, mas que organizem essa informação de acordo com o conteúdo de tais documentos, e apresentem o resultado da busca em uma representação gráfica que auxilie a exploração e o entendimento geral dos documentos recuperados. Neste contexto, foi proposto o projeto de uma Ferramenta Inteligente de Apoio à Pesquisa (FIP), do qual este trabalho é parte. O objetivo deste trabalho é analisar estratégias de recuperação automática de artigos científicos sobre uma determinada área de pesquisa a partir da Web, que poderá ser adotada pelo módulo de recuperação da FIP. Neste trabalho são considerados artigos escritos em inglês, no formato PDF, abrangendo as áreas da Ciência da Computação. Corpora de treino e teste foram usados para avaliação das abordagens simbólicas de Aprendizado de Máquina na indução de regras que poderão ser inseridas em um crawler inteligente para recuperação automática de artigos dessas áreas. Diversos experimentos foram executados para definir parâmetros de pré-processamento apropriados ao domínio, bem como para definir a melhor estratégia de aplicação das regras induzidas e do melhor algoritmo simbólico de indução. / Today, due to the increase of scientific documents available on the World Wide Web, search tools have become an important aid for information retrieval from the Internet in all fields of knowledge for researchers and users. However, the search tools currently available, in general, select a huge list of pages leaving the user with the final task of choosing those pages that actually fit its research. It is important to develop techniques and tools that return a list of documents related to the query made by the user in accordance with the content of such documents, and then present the result in a meaningful graphical representation with the aim to improve the exploration and understanding of the retrieved articles. In this context, a project of an Intelligent Tool for Research Supporting (FIP) was proposed. This MSc work is part of this project. The objective of this work is to analyze strategies of automatic scientific article retrieval on a specific field from the Web. Such strategy must fit the requirements of the retrieval module of the FIP. In this work articles written in English, in PDF format, covering the fields of Computer Science were considered. Corpora of training and testing were used to evaluate the symbolic approaches of Machine Learning in the induction of rules. These rules could be imbedded in an intelligent crawler for automatic retrieving of the articles in the chosen fields. Several experiments have been carried out in order to define parameters as attribute weights, cut-off point, stopwords in the corpora domain, a better strategy to apply the rules for the categorization of the articles and a better symbolic algorithm to induce the rules
137

Avaliação de métodos de inferência de redes de regulação gênica. / Evaluation of gene regulatory networks inference methods.

Fachini, Alan Rafael 17 October 2016 (has links)
A representação do Sistema de Regulação Gênica por meio de uma Rede de Regulação Gênica (GRN) pode facilitar a compreensão dos processos biológicos no nível molecular, auxiliando no entendimento do comportamento dos genes, a descoberta da causa de doenças e o desenvolvimento de novas drogas. Através das GRNs pode-se avaliar quais genes estão ativos e quais são suas influências no sistema. Nos últimos anos, vários métodos computacionais foram desenvolvidos para realizar a inferência de redes a partir de dados de expressão gênica. Esta pesquisa apresenta uma análise comparativa de métodos de inferência de GRNs, realizando uma revisão do modelo experimental descrito na literatura atual aplicados a conjuntos de dados contendo poucas amostras. Apresenta também o uso comitês de especialistas (ensemble) para agregar o resultado dos métodos a fim de melhorar a qualidade da inferência. Como resultado obteve-se que o uso de poucas amostras de dados (abaixo de 50) não fornecem resultados interessantes para a inferência de redes. Demonstrou-se também que o uso de comitês de especialistas melhoram os resultados de inferência. Os resultados desta pesquisa podem auxiliar em pesquisas futuras baseadas em GRNs. / The representation of the gene regulation system by means of a Gene Regulatory Network (GRN) can help the understanding of biological processes at the molecular level, elucidating the behavior of genes and leading to the discovery of disease causes and the development of new drugs. GRNs allow to evaluate which genes are active and how they influence the system. In recent years, many computational methods have been developed for networks inference from gene expression data. This study presents a comparative analysis of GRN inference methods, reviewing the experimental modeling present in the state-of-art scientific publications applied to datasets with small data samples. The use of ensembles was proposed to improve the quality of the network inference. As results, we show that the use of small data samples (less than 50 samples) do not show a good result in the network inference problem. We also show that the use of ensemble improve the network inference.
138

Geração automática de laudos médicos para o diagnóstico de epilepsia por meio do processamento de eletroencefalogramas utilizando aprendizado de máquina / Automatic Generation of Medical Reports for Epilepsy Diagnosis through Electroencephalogram Processing using Machine Learning

Oliva, Jefferson Tales 05 December 2018 (has links)
A epilepsia, cujas crises são resultantes de distúrbios elétricos temporários no cérebro, é a quarta enfermidade neurológica mais comum, atingindo aproximadamente 50 milhões de pessoas. Essa enfermidade pode ser diagnosticada por meio de eletroencefalogramas (EEG), que são de elevada importância para o diagnóstico de enfermidades cerebrais. As informações consideradas relevantes desses exames são descritas em laudos médicos, que são armazenados com o objetivo de manter o histórico clínico do paciente e auxiliar os especialistas da área médica na realização de procedimentos futuros, como a identificação de padrões de determinadas enfermidades. Entretanto, o crescente aumento no armazenamento de dados médicos inviabiliza a análise manual dos mesmos. Outra dificuldade para a análise de EEG é a variabilidade de opiniões de especialistas sobre um mesmo padrão observado, podendo aumentar a dificuldade para o diagnóstico de enfermidades cerebrais. Também, os exames de EEG podem conter padrões relevantes difíceis de serem observados, mesmo por profissionais experientes. Da mesma forma, nos laudos podem faltar informações e/ou conter erros de digitação devido aos mesmos serem preenchidos apressadamente por especialistas. Assim, neste trabalho foi desenvolvido o método computacional de geração de laudos médicos (automatic generation of medical report AutoGenMR), que tem o propósito de auxiliar especialistas da área médica no diagnóstico de epilepsia e em tomadas de decisão. Esse processo é aplicado em duas fases: (1) construção de classificadores por meio de métodos de aprendizado de máquina e (2) geração automática de laudos textuais. O AutoGenMR foi avaliado experimentalmente em dois estudos de caso, para os quais, em cada um foi utilizada uma base de EEG disponibilizada publicamente e gratuitamente. Nessas avaliações foram utilizadas as mesmas configurações experimentais para a extração de características e construção de classificadores (desconsiderando que um dos problemas de classificação é multiclasse e o outro, binário). No primeiro estudo de caso, os modelos preditivos geraram, em média, 89% das expressões de laudos. Na segunda avaliação experimental, em média, 76% das sentenças de laudos foram geradas corretamente. Desse modo, os resultados de ambos estudos são considerados promissores, constatando que o AutoGenMR pode auxiliar especialistas na identificação de padrões relacionados a eventos epiléticos, na geração de laudos textuais padronizados e em processos de tomadas de decisão. / Epilepsy, which seizures are due to temporary electrical disturbances in the brain, is the fourth most common neurological disorder, affecting 50 million people, approximately. This disease can be diagnosed by electroencephalograms (EEG), which have great importance for the diagnosis of brain diseases. The information considered relevant in these tests is described in textual reports, which are stored in order to maintain the patients medical history and assist medical experts in performing such other procedures as the standard identification of certain diseases. However, the increasing medical data storage makes it unfeasible for manual analysis. Another challenge for the EEG analysis is the diversity of expert opinions on particular patterns observed and may increase the difficulty in diagnosing diseases of the brain. Moreover, the EEG may contain patterns difficult to be noticed even by experienced professionals. Similarly, the reports may not have information and/or include typographical errors due to its rushed filling by experts. Thereby, in this work, the automatic generation of medical report (AutoGenMR) method was developed in order to assist medical experts in the diagnosis of epilepsy and decision making. This method is applied in two phases: (1) classifier building by machine learning techniques and (2) automatic report generation. The AutoGenMR was computed in two case studies, for which, a public and freely available EEG database was used in each one. In both studies, the same experimental settings for feature extraction and classifier building were used. In the first study case, the classifiers correctly generated, on average, 89% of the report expressions. In the second experiment, on average, 76% of the report sentences were successfully generated. In this sense, the results of both studies are considered promising, noting that the AutoGenMR can assist medical experts in the identification of patterns related to epileptic events, standardized textual report generation, and in decision-making processes.
139

Uma abordagem para a indução de árvores de decisão voltada para dados de expressão gênica / An Approach for the Induction of Decision Trees Focused on Gene Expression Data

Perez, Pedro Santoro 18 April 2012 (has links)
Estudos de expressão gênica têm sido de extrema importância, permitindo desenvolver terapias, exames diagnósticos, medicamentos e desvendar uma infinidade de processos biológicos. No entanto, estes estudos envolvem uma série de dificuldades: grande quantidade de genes, sendo que geralmente apenas um pequeno número deles está envolvido no problema estudado; presença de ruído nos dados analisados; entre muitas outras. O projeto de pesquisa deste mestrado consiste no estudo de algoritmos de indução de árvores de decisão; na definição de uma metodologia capaz de tratar dados de expressão gênica usando árvores de decisão; e na implementação da metodologia proposta como algoritmos capazes de extrair conhecimento a partir desse tipo de dados. A indução de árvores de decisão procura por características relevantes nos dados que permitam modelar precisamente um conceito, mas tem também a preocupação com a compreensibilidade do modelo gerado, auxiliando os especialistas na descoberta de conhecimento, algo importante nas áreas médica e biológica. Por outro lado, tais indutores apresentam relativa instabilidade, podendo gerar modelos bem diferentes com pequenas mudanças nos dados de treinamento. Este é um dos problemas tratados neste mestrado. Mas o principal problema tratado se refere ao comportamento destes indutores em dados de alta dimensionalidade, mais especificamente dados de expressão gênica: atributos irrelevantes prejudicam o aprendizado e vários modelos com desempenho similar podem ser gerados. Diversas técnicas foram exploradas para atacar os problemas mencionados, mas este estudo se concentrou em duas delas: windowing, que foi a técnica mais explorada e para a qual este mestrado propôs uma série de alterações com vistas à melhoria de seu desempenho; e lookahead, que procura construir a árvore levando em considerações passos subsequentes do processo de indução. Quanto ao windowing, foram explorados aspectos relacionados ao procedimento de poda das árvores geradas durante a execução do algoritmo; uso do erro estimado em substituição ao erro de treinamento; uso de ponderação do erro calculado durante a indução de acordo com o tamanho da janela; e uso da confiança na classificação para decidir quais exemplos utilizar na atualização da janela corrente. Com relação ao lookahead, foi implementada uma versão de um passo à frente, ou seja, para tomar a decisão na iteração corrente, o indutor leva em consideração a razão de ganho de informação do passo seguinte. Os resultados obtidos, principalmente com relação às medidas de desempenho baseadas na compreensibilidade dos modelos induzidos, mostram que os algoritmos aqui propostos superaram algoritmos clássicos de indução de árvores. / Gene expression studies have been of great importance, allowing the development of new therapies, diagnostic exams, drugs and the understanding of a variety of biological processes. Nevertheless, those studies involve some obstacles: a huge number of genes, while only a very few of them are really relevant to the problem at hand; data with the presence of noise; among others. This research project consists of: the study of decision tree induction algorithms; the definition of a methodology capable of handling gene expression data using decision trees; and the implementation of that methodology as algorithms that can extract knowledge from that kind of data. The decision tree induction searches for relevant characteristics in the data which would allow it to precisely model a certain concept, but it also worries about the comprehensibility of the generated model, helping specialists to discover new knowledge, something very important in the medical and biological areas. On the other hand, such inducers present some instability, because small changes in the training data might produce great changes in the generated model. This is one of the problems being handled in this Master\'s project. But the main problem this project handles refers to the behavior of those inducers when it comes to high-dimensional data, more specifically to gene expression data: irrelevant attributes may harm the learning process and many models with similar performance may be generated. A variety of techniques have been explored to treat those problems, but this study focused on two of them: windowing, which was the most explored technique and to which this project has proposed some variations in order to improve its performance; and lookahead, which builds each node of a tree taking into consideration subsequent steps of the induction process. As for windowing, the study explored aspects related to the pruning of the trees generated during intermediary steps of the algorithm; the use of the estimated error instead of the training error; the use of the error weighted according to the size of the current window; and the use of the classification confidence as the window update criterion. As for lookahead, a 1-step version was implemented, i.e., in order to make the decision in the current iteration, the inducer takes into consideration the information gain ratio of the next iteration. The results show that the proposed algorithms outperform the classical ones, especially considering measures of complexity and comprehensibility of the induced models.
140

Reconhecimento de padrões usando uma rede neural pulsada inspirada no bulbo olfatório / Pattern Reconigtion Using Spiking Neuron Networks Inspired on Olfactory Bulb

Figueira, Lucas Baggio 31 August 2011 (has links)
O sistema olfatório é notável por sua capacidade de discriminar odores muito similares, mesmo que estejam misturados. Essa capacidade de discriminação é, em parte, devida a padrões de atividade espaço-temporais gerados nas células mitrais, as células principais do bulbo olfatório, durante a apresentação de um odor. Tais padrões dinâmicos decorrem de interações sinápticas recíprocas entre as células mitrais e interneurônios inibitórios do bulbo olfatório, por exemplo, as células granulares. Nesta tese, apresenta-se um modelo do bulbo olfatório baseado em modelos pulsados das células mitrais e granulares e avalia-se o seu desempenho como sistema reconhecedor de padrões usando-se bases de dados de padrões artificiais e reais. Os resultados dos testes mostram que o modelo possui a capacidade de separar padrões em diferentes classes. Essa capacidade pode ser explorada na construção de sistemas reconhecedores de padrões. Apresenta-se também a ferramenta denominada Nemos, desenvolvida para a implementação do modelo, que é uma plataforma para simulação de neurônios e redes de neurônios pulsados com interface gráfica amigável com o usuário. / The olfactory system is a remarkable system capable of discriminating very similar odorant mixtures. This is in part achieved via spatio-temporal activity patterns generated in mitral cells, the principal cells of the olfactory bulb, during odor presentation. Here, we present a spiking neural network model of the olfactory bulb and evaluate its performance as a pattern recognition system with datasets taken from both artificial and real pattern databases. Our results show that the dynamic activity patterns produced in the mitral cells of the olfactory bulb model by pattern attributes presented to it have a pattern separation capability. This capability can be explored in the construction of high-performance pattern recognition systems. Besides, we proposed Nemos a framework for simulation spiking neural networks through graphical user interface and has extensible models for neurons, synapses and networks.

Page generated in 0.0673 seconds