Spelling suggestions: "subject:"aprendizado doo computador"" "subject:"aprendizado ddo computador""
101 |
Classificação automática de falhas em arquitetura orientada a serviços / Automatic fault classification in a service-oriented architectureFelix, Kleber Gonçalves 29 August 2017 (has links)
Uma arquitetura distribuída é composta de diversos sistemas que trocam mensagens entre si. Falhas na integração destes sistemas podem ocorrer, exigindo uma investigação detalhada dos profissionais de suporte para encontrar a causa raiz do problema. O processo manual de identificação de falhas é difícil e demorado. Ganhos significativos podem ser obtidos através da automação do processo de classificação de falhas. Este trabalho tem por objetivo apresentar um método para auxílio no processo de diagnóstico de falhas, classificando automaticamente as falhas geradas em uma arquitetura orientada a serviços. Este método, denominado SOAFaultControl, se beneficia de arquiteturas distribuídas que adotam SOA e um Enterprise Service Bus (ESB). Utilizando-se de técnicas de aprendizado de máquina, foi possível estabelecer um modelo para classificação de falhas em categorias preestabelecidas. Para alcançar o objetivo deste trabalho foi necessário testar e avaliar os seguintes algoritmos de aprendizagem de máquina: Support Vector Machine, Naive Bayes e AdaBoost. Como resultado, o algoritmo Support Vector Machine obteve melhor desempenho nas métricas: acurácia, precisão, revocação e F1. / A distributed architecture is composed of many systems that exchange messages between each other. Faults in the integration of these systems may occur and they required a detailed investigation of support professionals to identifying the root cause of the problem. The manual process to identify causes of failure is difficult and time-consuming. Significant efficiency gains can be achieved by automating the faults classification process. This work presents a method to support the automated fault diagnostic process, automatically classifying faults generated in a Service Oriented Architecture (SOA). This method denominated SOAFaultControl, may be executed in a distributed architecture that adote SOA and an Enterprise Service Bus (ESB). Using machine learning techniques, was possible build a model to classify fault messages captured in a SOA environment, in pre-established classes. To achieve the objectives of this work it was necessary to test the following machine learning algorithms: Support Vector Machine, Naive Bayes, and AdaBoost. Results show that Support Vector Machine algorithm achieved better performance in the following metrics: precision, accuracy, recall, and F1.
|
102 |
Development and evaluation of an elderly fall detection system based on a wearable device located at wrist / Desenvolvimento e avaliação de um sistema de detecção de quedas de idosos baseado em um dispositivo vestível localizado no punhoQuadros, Thiago de 31 August 2017 (has links)
A queda de idosos é um problema de saúde mundial. Todos os anos, cerca de 30% dos idosos com 65 anos ou mais são vítimas de quedas. Além disso, as consequências de uma queda podem ser fisiológicas (e.g. fraturas ósseas, ferimentos musculares) e psicológicas, como a perda de autoconfiança, levando a novas quedas. Uma solução para este problema está relacionada com ações preventivas (e.g. adaptação de mobília) aliadas a sistemas de detecção de quedas, os quais podem notificar familiares e serviços médicos de urgência. Como o tempo de espera por socorro após uma queda está relacionado com a severidade das consequências dela, esses sistemas devem oferecer elevada acurácia e detecção em tempo real. Embora existam várias soluções para isso na literatura (a maioria relacionada com dispositivos vestíveis), poucas delas estão relacionadas a dispositivos de punho, principalmente por causa dos desafios existentes para essa configuração. Considerando o punho como um local mais confortável, discreto e aceitável para uso de um dispositivo (menos associado com o estigma do uso de uma solução médica), este trabalho propõe o desenvolvimento e avaliação de uma solução baseada nessa configuração. Para isso, diferentes sensores (acelerômetro, giroscópio e magnetômetro) foram combinados com diferentes algoritmos, baseados em métodos de limiar e aprendizado de máquina, visando definir os melhores sinais e abordagem para a detecção de quedas. Esses métodos consideraram informações de aceleração, velocidade, deslocamento e orientação espacial, permitindo o cálculo de componentes verticais do movimento. Para o treino e avaliação dos algoritmos, dois protocolos diferentes foram empregados: um primeiro envolvendo 2 voluntários (homens, 27 e 31 anos) simulando um total de 80 sinais de queda e 80 de não-queda, e um segundo envolvendo 22 voluntários (14/8 homens/mulheres, idade média: 25,2 ± 4,7) simulando um total de 396 sinais de queda e 396 de não-queda. Uma análise exaustiva de diferentes sinais e parâmetros de configuração foi executada para cada método. O melhor algoritmo baseado em limiar considerou sinais de aceleração vertical e velocidade total, alcançando 95,8% de sensibilidade e 86,5% de especificidade. Por outro lado, o melhor algoritmo de aprendizagem de máquina foi o baseado no método K-Nearest Neighbors, considerando informações de aceleração, velocidade e deslocamento verticais combinadas com os ângulos de orientação espacial: 100% de sensibilidade e 97,9% de especificidade. Os resultados obtidos permitem enfatizar a relevância de algoritmos de aprendizagem de máquina para sistemas de detecção de queda vestíveis localizados no punho quando comparados a algoritmos baseados em limiar. Esta conclusão oferece grande contribuição para a pesquisa de detectores de quedas similares, sugerindo a melhor abordagem para novos desenvolvimentos. / Falls in the elderly age are a world health problem. Every year, about 30% of people aged 65 or older become victims of fall events. The consequences of a fall may be physiological (e.g. bone fractures, muscular injuries) and psychological, including the loss of self-confidence by fear of falling, which leads to new falls. A solution to this problem is related to preventive actions (e.g. adapting furniture) allied to fall detection systems, which can alert family members and emergency medical services. Since the response time for help is related to the fall's consequences and severity, such systems must offer high accuracy and real-time fall detection. Although there are many fall detection solutions in literature (most part of them related to wearable devices), few of them are related to wrist-worn devices, mainly because of the existing challenges for this configuration. Considering the wrist as a comfortable, discrete and acceptable place for an elderly wearable device (less associated to the stigma of using a medical device), this work proposes the development and evaluation of a fall detection solution based on this configuration. For this, different sensors (accelerometer, gyroscope and magnetometer) were combined to different algorithms, based on threshold and machine learning methods, in order to define the best signals and approach for an elderly fall detection. These methods considered acceleration, velocity and displacement information, relating them with wrist spatial orientation, allowing the calculation of the vertical components of each movement. For the algorithms' training and evaluation, two different protocols were employed: one involving 2 volunteers (both males, ages of 27 and 31) performing a total of 80 fall and 80 non-fall events simulation, and the other involving 22 volunteers (14/8 males/females, ages mean: 25.2 ± 4.7) performing a total of 396 fall and 396 non-fall events simulation. An exhaustive evaluation of different signals and configuration parameters was performed for each method. The best threshold-based algorithm employed the vertical acceleration and total velocity signals, achieving 95.8% and 86.5% of sensitivity and specificity, respectively. On the other hand, the best machine learning algorithm was based on the K-Nearest Neighbors method employing the vertical acceleration, velocity and displacement information combined with spatial orientation angles: 100% of sensitivity and 97.9% of specificity. The obtained results allow to emphasize the relevance of machine learning algorithms for wrist-worn fall detection systems instead of traditional threshold-based algorithms. These results offer great contributions for the research of similar wearable fall detectors, suggesting the best approach for new developments.
|
103 |
A contribution to semantic description of images and videos: an application of soft biometrics / Uma contribuição para descrição semântica de imagens e vídeos: uma aplicação de biometrias fracasPerlin, Hugo Alberto 08 December 2015 (has links)
Fundação Araucária / Os seres humanos possuem uma alta capacidade de extrair informações de dados visuais, adquiridos por meio da visão. Através de um processo de aprendizado, que se inicia ao nascer e continua ao longo da vida, a interpretação de imagens passa a ser feita de maneira quase instintiva. Em um relance, uma pessoa consegue facilmente descrever com certa precisão os componentes principais que compõem uma determinada cena. De maneira geral, isto é feito extraindo-se características de baixo nível, como arestas, texturas e formas, e associando-as com significados de alto nível. Ou seja, realiza-se uma descrição semântica desta cena. Um exemplo disto é a capacidade de reconhecer outras pessoas e descrever suas características físicas e comportamentais. A área de visão computacional tem como principal objetivo desenvolver métodos capazes de realizar interpretação visual com desempenho similar aos humanos. Estes métodos englobam conhecimento de aprendizado de máquina e processamento de imagens. Esta tese tem como objetivo propor métodos de visão computacional que permitam a extração de informações de alto nível na forma de biometrias leves. Estas biometrias representam características inerentes ao corpo e ao comportamento humano. Porém, não permitem a identificação unívoca de uma pessoa. Para tanto, este problema foi abordado de duas formas, aprendizado não-supervisionado e supervisionado. A primeira busca agrupar as imagens através de um processo de aprendizado automático de extração de características, empregando técnicas de convoluções, computação evolucionária e clusterização. Nesta abordagem as imagens utilizadas contém faces e pessoas. A segunda abordagem emprega redes neurais convolucionais, que possuem a capacidade de operar sobre imagens cruas, aprendendo tanto o processo de extração de características quanto a classificação. Aqui as imagens são classificadas de acordo com gênero e roupas, divididas em parte superior e inferior do corpo humano. A primeira abordagem, quando testada com diferentes bancos de imagens, obteve uma acurácia de aproximadamente 80% para faces e não-faces e 70% para pessoas e não-pessoas. A segunda, testada utilizando imagens e vídeos, obteve uma acurácia de cerca de 70% para gênero, 80% para roupas da parte superior e 90% para a parte inferior. Os resultados destes estudos de casos, mostram que os métodos propostos são promissores, permitindo a realização de anotação automática de informações de alto nível. Isto abre possibilidades para o desenvolvimento de aplicações em diversas áreas, como busca de imagens e vídeos baseada em conteúdo e segurança por vídeo, reduzindo o esforço humano nas tarefas de anotação manual e monitoramento. / Humans have a high ability to extract visual data information acquired by sight. Trought a learning process, which starts at birth and continues throughout life, image interpretation becomes almost instinctively. At a glance, one can easily describe a scene with reasonable precision, naming its main components. Usually, this is done by extracting low-level features such as edges, shapes and textures, and associanting them to high level meanings. In this way, a semantic description of the scene is done. An example of this, is the human capacity to recognize and describe other people physical and behavioral characteristics, or biometrics. Soft-biometrics also represents inherent characteristics of human body and behaviour, but do not allow unique person identification. Computer vision area aims to develop methods capable of performing visual interpretation with performance similar to humans. This thesis aims to propose computer vison methods which allows high level information extraction from images in the form of soft biometrics. This problem is approached in two ways, unsupervised and supervised learning methods. The first seeks to group images via an automatic feature extraction learning , using both convolution techniques, evolutionary computing and clustering. In this approach employed images contains faces and people. Second approach employs convolutional neural networks, which have the ability to operate on raw images, learning both feature extraction and classification processes. Here, images are classified according to gender and clothes, divided into upper and lower parts of human body. First approach, when tested with different image datasets obtained an accuracy of approximately 80% for faces and non-faces and 70% for people and non-person. The second tested using images and videos, obtained an accuracy of about 70% for gender, 80% to the upper clothes and 90% to lower clothes. The results of these case studies, show that proposed methods are promising, allowing the realization of automatic high level information image annotation. This opens possibilities for development of applications in diverse areas such as content-based image and video search and automatica video survaillance, reducing human effort in the task of manual annotation and monitoring.
|
104 |
Classificação automática de falhas em arquitetura orientada a serviços / Automatic fault classification in a service-oriented architectureFelix, Kleber Gonçalves 29 August 2017 (has links)
Uma arquitetura distribuída é composta de diversos sistemas que trocam mensagens entre si. Falhas na integração destes sistemas podem ocorrer, exigindo uma investigação detalhada dos profissionais de suporte para encontrar a causa raiz do problema. O processo manual de identificação de falhas é difícil e demorado. Ganhos significativos podem ser obtidos através da automação do processo de classificação de falhas. Este trabalho tem por objetivo apresentar um método para auxílio no processo de diagnóstico de falhas, classificando automaticamente as falhas geradas em uma arquitetura orientada a serviços. Este método, denominado SOAFaultControl, se beneficia de arquiteturas distribuídas que adotam SOA e um Enterprise Service Bus (ESB). Utilizando-se de técnicas de aprendizado de máquina, foi possível estabelecer um modelo para classificação de falhas em categorias preestabelecidas. Para alcançar o objetivo deste trabalho foi necessário testar e avaliar os seguintes algoritmos de aprendizagem de máquina: Support Vector Machine, Naive Bayes e AdaBoost. Como resultado, o algoritmo Support Vector Machine obteve melhor desempenho nas métricas: acurácia, precisão, revocação e F1. / A distributed architecture is composed of many systems that exchange messages between each other. Faults in the integration of these systems may occur and they required a detailed investigation of support professionals to identifying the root cause of the problem. The manual process to identify causes of failure is difficult and time-consuming. Significant efficiency gains can be achieved by automating the faults classification process. This work presents a method to support the automated fault diagnostic process, automatically classifying faults generated in a Service Oriented Architecture (SOA). This method denominated SOAFaultControl, may be executed in a distributed architecture that adote SOA and an Enterprise Service Bus (ESB). Using machine learning techniques, was possible build a model to classify fault messages captured in a SOA environment, in pre-established classes. To achieve the objectives of this work it was necessary to test the following machine learning algorithms: Support Vector Machine, Naive Bayes, and AdaBoost. Results show that Support Vector Machine algorithm achieved better performance in the following metrics: precision, accuracy, recall, and F1.
|
105 |
Development and evaluation of an elderly fall detection system based on a wearable device located at wrist / Desenvolvimento e avaliação de um sistema de detecção de quedas de idosos baseado em um dispositivo vestível localizado no punhoQuadros, Thiago de 31 August 2017 (has links)
A queda de idosos é um problema de saúde mundial. Todos os anos, cerca de 30% dos idosos com 65 anos ou mais são vítimas de quedas. Além disso, as consequências de uma queda podem ser fisiológicas (e.g. fraturas ósseas, ferimentos musculares) e psicológicas, como a perda de autoconfiança, levando a novas quedas. Uma solução para este problema está relacionada com ações preventivas (e.g. adaptação de mobília) aliadas a sistemas de detecção de quedas, os quais podem notificar familiares e serviços médicos de urgência. Como o tempo de espera por socorro após uma queda está relacionado com a severidade das consequências dela, esses sistemas devem oferecer elevada acurácia e detecção em tempo real. Embora existam várias soluções para isso na literatura (a maioria relacionada com dispositivos vestíveis), poucas delas estão relacionadas a dispositivos de punho, principalmente por causa dos desafios existentes para essa configuração. Considerando o punho como um local mais confortável, discreto e aceitável para uso de um dispositivo (menos associado com o estigma do uso de uma solução médica), este trabalho propõe o desenvolvimento e avaliação de uma solução baseada nessa configuração. Para isso, diferentes sensores (acelerômetro, giroscópio e magnetômetro) foram combinados com diferentes algoritmos, baseados em métodos de limiar e aprendizado de máquina, visando definir os melhores sinais e abordagem para a detecção de quedas. Esses métodos consideraram informações de aceleração, velocidade, deslocamento e orientação espacial, permitindo o cálculo de componentes verticais do movimento. Para o treino e avaliação dos algoritmos, dois protocolos diferentes foram empregados: um primeiro envolvendo 2 voluntários (homens, 27 e 31 anos) simulando um total de 80 sinais de queda e 80 de não-queda, e um segundo envolvendo 22 voluntários (14/8 homens/mulheres, idade média: 25,2 ± 4,7) simulando um total de 396 sinais de queda e 396 de não-queda. Uma análise exaustiva de diferentes sinais e parâmetros de configuração foi executada para cada método. O melhor algoritmo baseado em limiar considerou sinais de aceleração vertical e velocidade total, alcançando 95,8% de sensibilidade e 86,5% de especificidade. Por outro lado, o melhor algoritmo de aprendizagem de máquina foi o baseado no método K-Nearest Neighbors, considerando informações de aceleração, velocidade e deslocamento verticais combinadas com os ângulos de orientação espacial: 100% de sensibilidade e 97,9% de especificidade. Os resultados obtidos permitem enfatizar a relevância de algoritmos de aprendizagem de máquina para sistemas de detecção de queda vestíveis localizados no punho quando comparados a algoritmos baseados em limiar. Esta conclusão oferece grande contribuição para a pesquisa de detectores de quedas similares, sugerindo a melhor abordagem para novos desenvolvimentos. / Falls in the elderly age are a world health problem. Every year, about 30% of people aged 65 or older become victims of fall events. The consequences of a fall may be physiological (e.g. bone fractures, muscular injuries) and psychological, including the loss of self-confidence by fear of falling, which leads to new falls. A solution to this problem is related to preventive actions (e.g. adapting furniture) allied to fall detection systems, which can alert family members and emergency medical services. Since the response time for help is related to the fall's consequences and severity, such systems must offer high accuracy and real-time fall detection. Although there are many fall detection solutions in literature (most part of them related to wearable devices), few of them are related to wrist-worn devices, mainly because of the existing challenges for this configuration. Considering the wrist as a comfortable, discrete and acceptable place for an elderly wearable device (less associated to the stigma of using a medical device), this work proposes the development and evaluation of a fall detection solution based on this configuration. For this, different sensors (accelerometer, gyroscope and magnetometer) were combined to different algorithms, based on threshold and machine learning methods, in order to define the best signals and approach for an elderly fall detection. These methods considered acceleration, velocity and displacement information, relating them with wrist spatial orientation, allowing the calculation of the vertical components of each movement. For the algorithms' training and evaluation, two different protocols were employed: one involving 2 volunteers (both males, ages of 27 and 31) performing a total of 80 fall and 80 non-fall events simulation, and the other involving 22 volunteers (14/8 males/females, ages mean: 25.2 ± 4.7) performing a total of 396 fall and 396 non-fall events simulation. An exhaustive evaluation of different signals and configuration parameters was performed for each method. The best threshold-based algorithm employed the vertical acceleration and total velocity signals, achieving 95.8% and 86.5% of sensitivity and specificity, respectively. On the other hand, the best machine learning algorithm was based on the K-Nearest Neighbors method employing the vertical acceleration, velocity and displacement information combined with spatial orientation angles: 100% of sensitivity and 97.9% of specificity. The obtained results allow to emphasize the relevance of machine learning algorithms for wrist-worn fall detection systems instead of traditional threshold-based algorithms. These results offer great contributions for the research of similar wearable fall detectors, suggesting the best approach for new developments.
|
106 |
Uma nova abordagem de aprendizagem de máquina combinando elicitação automática de casos, aprendizagem por reforço e mineração de padrões sequenciais para agentes jogadores de damasCastro Neto, Henrique de 21 November 2016 (has links)
Fundação de Amparo a Pesquisa do Estado de Minas Gerais / Agentes que operam em ambientes onde as tomadas de decisão precisam levar em
conta, além do ambiente, a atuação minimizadora de um oponente (tal como nos jogos),
é fundamental que o agente seja dotado da habilidade de, progressivamente, traçar um
perĄl de seu adversário que o auxilie em seu processo de seleção de ações apropriadas.
Entretanto, seria improdutivo construir um agente com um sistema de tomada de decisão
baseado apenas na elaboração desse perĄl, pois isso impediria o agente de ter uma Şidentidade
própriaŤ, o que o deixaria a mercê de seu adversário. Nesta direção, este trabalho
propõe um sistema automático jogador de Damas híbrido, chamado ACE-RL-Checkers,
dotado de um mecanismo dinâmico de tomada de decisões que se adapta ao perĄl de seu
oponente no decorrer de um jogo. Em tal sistema, o processo de seleção de ações (movimentos)
é conduzido por uma composição de Rede Neural de Perceptron Multicamadas e
biblioteca de casos. No caso, a Rede Neural representa a ŞidentidadeŤ do agente, ou seja,
é um módulo tomador de decisões estático já treinado e que faz uso da técnica de Aprendizagem
por Reforço TD( ). Por outro lado, a biblioteca de casos representa o módulo
tomador de decisões dinâmico do agente que é gerada pela técnica de Elicitação Automática
de Casos (um tipo particular de Raciocínio Baseado em Casos). Essa técnica possui
um comportamento exploratório pseudo-aleatório que faz com que a tomada de decisão
dinâmica do agente seja guiada, ora pelo perĄl de jogo do adversário, ora aleatoriamente.
Contudo, ao conceber tal arquitetura, é necessário evitar o seguinte problema: devido às
características inerentes à técnica de Elicitação Automática de Casos, nas fases iniciais do
jogo Ű em que a quantidade de casos disponíveis na biblioteca é extremamente baixa em
função do exíguo conhecimento do perĄl do adversário Ű a frequência de tomadas de decisão
aleatórias seria muito elevada, o que comprometeria o desempenho do agente. Para
atacar tal problema, este trabalho também propõe incorporar à arquitetura do ACE-RLCheckers
um terceiro módulo, composto por uma base de regras de experiência extraída
a partir de jogos de especialistas humanos, utilizando uma técnica de Mineração de Padrões
Sequenciais. O objetivo de utilizar tal base é reĄnar e acelerar a adaptação do
agente ao perĄl de seu adversário nas fases iniciais dos confrontos entre eles. Resultados
experimentais conduzidos em torneio envolvendo ACE-RL-Checkers e outros agentes correlacionados
com este trabalho, conĄrmam a superioridade da arquitetura dinâmica aqui
proposta. / ake into account, in addition to the environment, the minimizing action of an opponent
(such as in games), it is fundamental that the agent has the ability to progressively trace
a proĄle of its adversary that aids it in the process of selecting appropriate actions. However,
it would be unsuitable to construct an agent with a decision-making system based
on only the elaboration of this proĄle, as this would prevent the agent from having its
Şown identityŤ, which would leave it at the mercy of its opponent. Following this direction,
this work proposes an automatic hybrid Checkers player, called ACE-RL-Checkers,
equipped with a dynamic decision-making mechanism, which adapts to the proĄle of its
opponent over the course of the game. In such a system, the action selection process
(moves) is conducted through a composition of Multi-Layer Perceptron Neural Network
and case library. In the case, Neural Network represents the ŞidentityŤ of the agent, i.e.,
it is an already trained static decision-making module and makes use of the Reinforcement
Learning TD( ) techniques. On the other hand, the case library represents the
dynamic decision-making module of the agent, which is generated by the Automatic Case
Elicitation technique (a particular type of Case-Based Reasoning). This technique has a
pseudo-random exploratory behavior, which makes the dynamic decision-making on the
part of the agent to be directed, either by the game proĄle of the opponent or randomly.
However, when devising such an architecture, it is necessary to avoid the following problem:
due to the inherent characteristics of the Automatic Case Elicitation technique, in
the game initial phases, in which the quantity of available cases in the library is extremely
low due to low knowledge content concerning the proĄle of the adversary, the decisionmaking
frequency for random decisions is extremely high, which would be detrimental
to the performance of the agent. In order to attack this problem, this work also proposes
to incorporate onto the ACE-RL-Checkers architecture a third module composed
of a base of experience rules, extracted from games played by human experts, using a
Sequential Pattern Mining technique. The objective behind using such a base is to reĄne
and accelerate the adaptation of the agent to the proĄle of its opponent in the initial
phases of their confrontations. Experimental results conducted in tournaments involving
ACE-RL-Checkers and other agents correlated with this work, conĄrm the superiority of
the dynamic architecture proposed herein. / Tese (Doutorado)
|
Page generated in 0.1053 seconds