Spelling suggestions: "subject:"aprendizagem supervisionado - algoritmos"" "subject:"aprendizagem supervisionado - ealgoritmos""
1 |
Classificação da marcha em parkinsonianos: análise dos algoritmos de aprendizagem supervisionada / Classification of the parkinsonian gait: analysis of supervised learning algorithmsSouza, Hugo Araújo 12 April 2017 (has links)
Parkinson’s disease is the second most prevalent neurodegenerative disease in the elderly, although its dominance and incidence vary according to age, gender and race/ethnicity. Studies indicate that the prevalence increases with age, with an estimate of 5 to 26 cases per 100,000 people per year, being approximately 1% among individuals aged 65- 69 and ranging from 3% to 14.3% among the elderly over 85 years. The most common clinical signs in the inflammatory process include the presence of resting tremor, muscle stiffness, bradykinesia and postural instability. The diagnosis of the disease is not a simple task, as it is known that there are stages patterns of disease progression in the human organism. However, many patients do not follow this progress because of the heterogeneity of manifestations that may arise. The gait analysis has become an attractive and non-invasive quantitative mechanism that can aid in the detection and monitoring of PD patients. Feature extraction is a very important task for quality of the data to be used by the algorithms, aiming as main objective the reduction in the dimensionality of the data in a classification process. From the reduction of dimensionality it is possible to identify which attributes are important and to facilitate the visualization of the data. For data related to human gait, the purpose is to detect relevant attributes that may help in identifying gait cycle phases, such as support and swing phases, cadence, stride length, velocity, etc. To do this, it is necessary to identify and select which attributes are most relevant, as well as the classification method. This work evaluates the performance of supervised learning algorithms in the classification of human gait characteristics in an open database, also identifies which attributes are most relevant to the performance of the classifiers in aiding the identification of gait characteristics in PD patients. / A Doença de Parkinson é a segunda doença neurodegenerativa mais prevalente em idosos, embora seu domínio e incidência variem de acordo com a idade, sexo e raça/etnia. Estudos apontam que a prevalência aumenta com a idade, tendo estimativa de 5 a 26 casos a cada 100 mil pessoas por ano, sendo de aproximadamente 1% entre os indivíduos de 65 a 69 anos e, variando de 3% a 14,3% entre os idosos acima de 85 anos. Os sinais clínicos mais comuns no processo inflamatório incluem a presença de tremor em repouso, rigidez muscular, bradicinesia e instabilidade postural. O diagnóstico da doença não é uma tarefa simples, pois sabe-se que há padrões de estágios no avanço da doença no organismo humano. Porém, muitos pacientes não seguem esse progresso devido a heterogeneidade de manifestações que podem surgir. A análise da marcha tornou-se um mecanismo quantitativo atrativo e não invasivo que pode auxiliar na detecção e monitoramento de portadores de DP. A extração de características é uma tarefa de suma importância para a qualidade dos dados a serem empregados pelos algoritmos de AM, visando como principal objetivo a redução na dimensionalidade dos dados em um processo de classificação. A partir da redução da dimensionalidade é possível identificar, principalmente, quais atributos são importantes e facilitar a visualização dos dados. Para dados relacionados à marcha humana, o propósito é detectar relevantes atributos que possam ajudar na identificação das fases do ciclo da marcha, como as fases de apoio e swing, cadência, comprimento da passada, velocidade, entre outras. Para tal, é preciso identificar e selecionar quais atributos são mais relevantes, assim como o método de classificação. Este trabalho avalia o desempenho de algoritmos de aprendizagem supervisionada na classificação das características da marcha humana em uma base de dados aberta, também identifica quais atributos são mais relevantes para o desempenho dos classificadores no auxílio à identificação de características da marcha em portadores da DP.
|
Page generated in 0.1258 seconds