Spelling suggestions: "subject:"Ar condicionado automotive"" "subject:"Ar condicionado automotiva""
1 |
Comparação do desempenho do R-1234yf em substituição direta do R-134a em ar condicionado automotivo para máquinas agrícolasNoetzold, Juliano 14 October 2016 (has links)
Submitted by Silvana Teresinha Dornelles Studzinski (sstudzinski) on 2017-02-10T12:57:42Z
No. of bitstreams: 1
Juliano Noetzold_.pdf: 2795595 bytes, checksum: 2e54e66a30fc38e8ed8568de6278b69e (MD5) / Made available in DSpace on 2017-02-10T12:57:42Z (GMT). No. of bitstreams: 1
Juliano Noetzold_.pdf: 2795595 bytes, checksum: 2e54e66a30fc38e8ed8568de6278b69e (MD5)
Previous issue date: 2016-10-14 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / UNISINOS - Universidade do Vale do Rio dos Sinos / Ar condicionado automotivo para máquinas agrícolas e fora de estrada, como tratores e colheitadeiras, apresenta algumas características particulares quando comparado com outros sistemas de ar condicionado para veículos. Velocidade do ar e temperatura para uma ampla faixa de condições ambientais, operação sob condições climáticas altamente transitórias e extremas, alta capacidade de resfriamento para atender elevadas cargas térmicas e proporcionar uma rápida diminuição da temperatura do ambiente do operador são características deste tipo de aplicação. O ciclo de trabalho do compressor para este tipo de veículo está diretamente relacionado com a rotação do motor. Neste trabalho foram realizados experimentos para comparar o desempenho de um ar condicionado automotivo típico para veículos off-road com capacidade nominal de 6,7 kW, desenvolvido para operar originalmente com R-134a, comparando sua performance na substituição direta pelo R-1234yf. O sistema consiste basicamente de um compressor de deslocamento fixo, uma válvula de expansão termostática, um condensador de micro-multi canais e um evaporador tubo aleta. O sistema foi instalado em uma bancada experimental e os principais parâmetros do sistema avaliados em diferentes cargas de refrigerante para uma velocidade fixa do compressor de 3500 rpm, com objetivo de verificar a carga ótima de cada refrigerante. Os parâmetros de ciclo, como capacidade do evaporador, COP, potência de compressão, taxa de compressão, sub-resfriamento no condensador, superaquecimento no evaporador, queda de pressão nos trocadores de calor e linha de sucção, as temperaturas de saída do evaporador no lado ar e taxa de fluxo de massa são comparados. A carga de refrigerante ideal para R-1234yf foi encontrada com 50 g a mais do que com R-134a. Os resultados experimentais com o sistema funcionando com a carga de refrigerante ideal, indicam que para várias condições de temperaturas de entrada do ar no evaporador, umidade relativa de 43% e temperatura de entrada do ar no condensador em 35 ºC, o sistema funcionando com o R-1234yf tem valores de capacidade do evaporador e COP menores. O R-1234yf também apresenta um maior grau de sub-resfriamento, maior superaquecimento e maior queda de pressão no evaporador e na linha de sucção do que o R-134a. A relação de compressão e a potência consumida pelo compressor para R-1234yf é mais favorável. / Automotive air conditioning for off-road agricultural machinery, like tractors and combine harvesters, presents some particular characteristics when compared with others AC systems for vehicles. Higher air velocity and temperatures over a wide range of conditions, operation under transient climatic conditions, high cooling capacity to meet high thermal loads and rapid cool down capacity on the operator environment. In addition, the compressor duty cycle is related to the engine speed for this type of vehicle and the system work in an environment subject to severe vibration. In this work, experiments were carried out to compare the performance of a typical AC for off-road vehicles of 6.7 kW nominal capacity using R-134a and with its drop-in substitute, R-1234yf. The system consists of a fixed displacement compressor, a block type thermostatic expansion valve, a multiport micro channel condenser and a tube fin evaporator. This system was installed in an experimental setup and the main parameters of operation were measured at different refrigerants charges, for a fixed compressor velocity of 3500 rpm to find the optimal refrigerant charge of each one. The cycle parameters like evaporator capacity, COP, compressor power, compression ratio, evaporator superheating, condenser sub-cooling, refrigerant pressure drop in the heat exchangers, outlet airside temperatures from evaporator and mass flow rate are compared. The optimal refrigerant charge for R-1234yf was found to be 50 g larger than with R-134a. The experimental results with the system working with the optimal refrigerant charge indicate that for different evaporator inlet air conditions, relative humidity of 43% and condenser air inlet temperature of 35 ºC, the system running with the R-1234yf presented lower evaporator capacity, COP. The same refrigerant also shows a higher degree of sub-cooling, superheat and pressure drop in evaporator and suction line. The compressor ratio and the compressor power consumption for R-1234yf were more favorable
|
2 |
[pt] DESENVOLVIMENTO DE SISTEMA CLIMATIZADOR AUTOMOTIVO PARA AQUECIMENTO E RESFRIAMENTO / [en] DEVELOPMENT OF AN AUTOMOTIVE AIR CONDITIONING SYSTEM FOR HEATING AND COOLINGSERGIO LIBANIO DE CAMPOS 25 May 2015 (has links)
[pt] Sistemas condicionadores de ar automotivos têm sido extensivamente estudados, buscando melhor eficiência de resfriamento e redução do consumo de combustível. O presente trabalho tem como objetivo o estudo de um sistema condicionador de ar automotivo operando nos modos de resfriamento e aquecimento, este último atendendo às necessidades de conforto em dias frios nos veículos elétricos, os quais não apresentam calor de rejeito do motor, como nos veículos convencionais. Para tal foi projetado e montado, no Laboratório de Refrigeração, Condicionamento de Ar e Criogenia da PUC-Rio, um aparato experimental composto por duas câmaras de temperatura e umidade controladas, uma simulando o compartimento de passageiros e a outra, o ambiente externo. Um típico sistema condicionador de ar automotivo, composto por componentes comercialmente disponíveis e utilizados nos veículos atuais, foi dotado de válvulas direcionais, permitindo a inversão do ciclo de compressão de vapor do modo de resfriamento para o modo de aquecimento, operando neste último como bomba de calor. Dados experimentais foram levantados sob operação em regime permanente e transiente (período de partida), com temperaturas entre – 5 graus Celcius e 45 graus Celcius. Para o modo de resfriamento, seguiu-se a norma SAE J2765 e, para o de aquecimento, na ausência de normas, foram cobertas as operações em modos de recirculação do ar da cabine e de renovação com ar externo, entre as temperaturas de -5 graus Celcius e 10 graus Celcius. Foi também realizada uma simulação numérica, validada pelos dados experimentais, utilizando as equações fundamentais da termodinâmica e transferência de calor. O sistema testado mostrou-se viável na aplicação em veículos elétricos, uma vez que nestes o calor de rejeito previsto (regeneração de frenagem e efeito Joule na eletrônica de potência) não é suficiente para o conforto térmico em dias frios. Demonstrou-se que a bomba de calor consome menos energia que resistências as elétricas atualmente utilizadas. / [en] Automotive air conditioning systems have been extensively studied, searching for better cooling efficiency and reduced fuel consumption. The present work aims to study a system of automotive air conditioner operating in cooling and heating modes, the latter satisfies the needs of comfort on cold days in electrical vehicles, which do not include waste heat from the engine as the conventional vehicles. To this was designed and assembled in the Refrigeration, Air Conditioning and Cryogenics Laboratory, in Puc-Rio, an experimental apparatus consists of two chambers with temperature and humidity controlled, one, simulating the passenger compartment and the other, the external environment. A typical automotive air conditioning system, composed of commercially available components used in current vehicles is provided with a directional valve, allowing the inversion of vapor compression cooling mode to the heating mode cycle, the latter operating as a heat pump.
|
3 |
Avaliação do desempenho de um sistema de refrigeração automotivo com ejetor em ciclo COSFerreira, Henrique Schardosin 29 September 2017 (has links)
Submitted by JOSIANE SANTOS DE OLIVEIRA (josianeso) on 2018-04-25T13:35:45Z
No. of bitstreams: 1
Henrique Schardosin Ferreira_.pdf: 4214270 bytes, checksum: b40eaaf06dd9b49a976b944788dce2f1 (MD5) / Made available in DSpace on 2018-04-25T13:35:45Z (GMT). No. of bitstreams: 1
Henrique Schardosin Ferreira_.pdf: 4214270 bytes, checksum: b40eaaf06dd9b49a976b944788dce2f1 (MD5)
Previous issue date: 2017-09-29 / Nenhuma / Nessa dissertação foi apresentado um estudo do uso do ejetor bifásico em um sistema de refrigeração para condicionamento de ar automotivo, para recuperação das perdas de energia durante o processo de expansão. Um modelo numérico foi utilizado para a predição do ganho energético com a aplicação do ejetor com base no ciclo padrão de ejetor proposto por Gay (1931). Posteriormente, foi proposto um modelo numérico para a determinação das dimensões básicas necessárias para a fabricação do ejetor. Uma bancada de simulação construída para o ciclo de refrigeração padrão para condicionamento de ar automotivo foi modificada para a instalação do ejetor e passou a operar de acordo com o ciclo COS de Oshitani et al. (2005). Dos diversos modelos matemáticos existentes na literatura, foi escolhido um modelo de simulação de ciclo de ejetor para operação em regime subcrítico da análise unidimensional proposta por Kornhauser (1990) e para a solução do modelo foram desenvolvidos programas computacionais no software EES - Engineering Equation Solver, no qual as rotinas de cálculos foram construídas para solução numérica iterativa visando à determinação do ponto ótimo de operação do ciclo. Para comprovação do modelo e dos resultados obtidos pelos programas, foi repetida a análise apresentada por Kornhauser (1990) e os resultados comparados com os seus. Os resultados gerados pelos programas mostraram boa aderência aos publicados por autores que estudaram aplicação semelhante, sendo assim considerados confiáveis na aplicação para predição de desempenho de ciclos com ejetor em operação com fluidos em regime subcrítico. A bancada de testes instalada no Laboratório de Estudos Térmicos e Fluido Dinâmicos da Unisinos (LETEF), construída por Souza (2011) e posteriormente utilizada por Noetzold (2016) na simulação do ciclo padrão de refrigeração de um sistema de condicionamento de ar automotivo foi alterada para instalação do ejetor em operação sob configuração do ciclo COS. A adoção do ciclo COS se deu em função da incerteza do retorno de óleo e do controle da separação das fases do refrigerante no acumulador de sucção do ciclo padrão. O sistema foi submetido as condições de operação previstas na norma SAE J2765 OCT2008 (2008) e operou com R-134a. Os resultados foram comparados com os do ciclo padrão de Noetzold (2016) apresentando aumento médio do COP do ciclo de 25% para a faixa de baixa rotação e de 46% para a faixa de alta rotação e comparados também aos resultados de Lawrence (2012). / In this work was presented a study of the use of the ejector in a cooling system for automotive air conditioning, to recover energy losses during the expansion process. A numerical model was used to predict the energetic gain with ejector application based on the ejector standard cycle proposed by Gay (1931). Subsequently, a numerical model was proposed to determine the basic dimensions necessary for the ejector manufacturing. A simulation system for the standard refrigeration cycle for automotive air conditioning was modified for the ejector installation and started to operate according to the COS cycle by Oshitani et al. (2005).
From the several mathematical models in the literature, a model of the ejector cycle simulation for subcritical fluids of the one-dimensional analysis proposed by Kornhauser (1990) was chosen, and for the solution of the model computational programs were developed in the EES - Engineering Equation Solver software in which the calculation routines were constructed for iterative numerical solution in order to determine the optimum operating point of the cycle. To prove the model and the results obtained by the programs, the analysis presented by Kornhauser (1990) and the results compared were repeated. The results generated by the programs showed good results, being thus considered reliable in the application to predict performance of ejector cycles in operation with sub-critical fluids. The simulation system installed in the Laboratory of Thermal and Dynamic Fluid Studies of Unisinos (LETEF), built by Souza (2011) and later used by Noetzold (2016) in the simulation of the standard refrigeration cycle of an automotive air conditioning system, was changed for installation of the ejector in operation under COS cycle configuration. The choice of the COS cycle was due to the uncertainty of the oil return to compressor and the control of the separation of the phases of the refrigerant in the suction accumulator of the standard cycle. The system was subjected to the operating conditions set forth in the standard SAE J2765 OCT2008 (2008) and operated with R-134a. The results were compared with those of standard cycle by Noetzold (2016), showing a mean increase of the cycle COP of 25% for the low rotation range and 46% for the high rotation range and also compared to Lawrence (2012).
|
Page generated in 0.117 seconds