• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exploring the relationship between circadian neuron activity patterns and behavioral output in Drosophila

Haase, Stephanie Jean 01 May 2019 (has links)
Circadian clocks drive the daily patterns of behavior and physiology observed in most organisms. These internal clocks allow organisms to advantageously align their behavior to daily cycles in the environment such as light and temperature. The fruit fly Drosophila displays many robust, daily behavioral rhythms including discrete bouts of locomotor activity at dawn (i.e. morning activity) and dusk (i.e. evening activity). The molecular clocks that drive these daily activity bouts are found in approximately 150 circadian pacemaker neurons in the fly brain. Interestingly, the timing of the molecular clocks is synchronous between all pacemaker neurons, yet different subsets of these neurons appear to make quite different contributions to the regulation of morning vs. evening activity. It remains poorly understood how the molecular circadian clock drives daily rhythms in pacemaker neuron activity or how the activities of different groups of pacemaker neurons combine to produce complex behavioral output. The overall goal of this thesis is to characterize how different subsets of Drosophila pacemaker neurons contribute to daily behavioral regulation both individually and as a network. To examine daily patterns of neuronal activity in different groups of circadian clock neurons, we have established imaging methods using genetically encoded fluorescent sensors. For these sensors, changes in fluorescence levels correspond to changes in neuronal activity, thus allowing us to measure neuronal activity patterns in real-time and throughout the day. Using these tools, I have characterized the daily activity patterns of different groups of the clock neurons that agree with published rhythms in activity as assessed by patch-clamp electrophysiology and calcium imaging We have also used genetic and molecular approaches such as RNA interference (RNAi) to alter gene expression in a tissue-specific manner. These approaches allow us to manipulate the function of different groups of clock neurons and to determine how these manipulations affect rhythmic behavior and neuronal activity patterns. We have silenced different subsets of circadian pacemaker neurons using RNAi knockdown of the NARROW ABDOMEN (NA) sodium leak channel and identified a complex role for a subset of the posterior dorsal neurons 1 (DN1p) in regulating locomotor behavior. The DN1p are known to be involved in promoting morning behavior, and recent studies have shown that a subset of the DN1p regulate midday sleep bouts via downstream sleep regulating neurons. Our data suggest that the DN1p neurons likely suppress midday activity through inhibition of other circadian pacemaker neurons, and that this inhibitory role can be compensated for by light. Finally, we have also examined the intracellular mechanisms regulating circadian neuronal output. Rhythmic activity of the NA leak channel and its mammalian ortholog (NALCN) have been shown to contribute to daily excitability rhythms in circadian pacemaker neurons. We used temporally-restricted expression of RNAi and rescue constructs to identify a developmental requirement for the NA channel complex in Drosophila, and we demonstrate that channel complex proteins are very stable in the Drosophila brain. These data suggest that circadian regulation of the NA channel in adults may involve post-translational mechanisms that control activity and not just expression of the channel complex.
2

“Frankenstein Complex” in the Realm of Digital Humanities : Data Mining Classic Horror Cinema via Media History Digital Library (MHDL)

Jiang, Tianyu January 2019 (has links)
This thesis addresses the complexity of digitalization and humanities research practices, with a specific focus on digital archives and film history research. I propose the term “Frankenstein Complex” to highlight and contextualize the epistemological collision and empirical challenges humanities scholars encounter when utilizing digital resources with digital methods. A particular aim of this thesis is to scrutinize digital archiving practices when using the Media History Digital Library (MHDL) as a case for a themed meta-inquiry on the preservation of and access to classic horror cinema in this particular digital venue. The project found conventional research methods, such as the close reading of classical cinema history, to be limiting. Instead, the project tried out a distant reading technique throughout the meta-inquiry to better interrogate with the massive volume of data generated by MHDL. Besides a general reassessment of debates in the digital humanities and themes relating to horror film culture, this thesis strives for a reflection on classic horror spectatorship through the lens of sexual identity, inspired by Sara Ahmed’s perspective on queer phenomenology. This original reading of horror history is facilitated by an empirical study of the digital corpus at hand, which in turn gives insights into the entangled relation between subjective identities and the appointed research contexts.
3

Účinnost přeměny elektrické energie na světlo u současných světelných zdrojů / Efficiency of Converting Electric Energy to Light in Current Light Sources

Krbal, Michal January 2010 (has links)
The goal of this diploma’s thesis is to inform about present development of light sources, new technologies and about achieved parameters of these light sources. The thesis is mainly directed to describe efficiency of transformation electric energy to light at single types of light sources. There are described the concrete technical parameters of sources quoted by manufacturers and the contructional solution of single types of light sources. There is created a graphic comparation of electrotechnical and light parameters of the light sources.

Page generated in 0.0434 seconds