• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 6
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 38
  • 12
  • 11
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Centrifuge modelling of the behaviour of geosynthetic-reinforced soils above voids

da Silva, Talia Simone January 2018 (has links)
Understanding the deformation mechanisms of soils and geosynthetics in response to the formation of a void below a geosynthetic-reinforced soil is crucial to provide efficient designs of geosynthetic-reinforced soil systems such as embankments and landfill liners. Centrifuge modelling of the soil and geosynthetic behaviour was conducted using a trapdoor to simulate the formation of a void in a controlled environment at realistic stress levels. A plane-strain model allowed visual observations of the deformation mechanisms using Particle Image Velocimetry. Granular soils and model clay liners were tested, as would be relevant to embankments and landfills respectively. These soils were tested with and without the reinforcement to evaluate the benefit provided by the geosynthetic. Detailed analysis of the centrifuge test results showed that arching significantly reduces the stress at the base of the soil when a void forms; this mechanism is due to stress redistributions and not the formation of a physical arch. A new method to reliably predict this reduction was provided by calculating the coefficient of lateral stress on the failure plane based on the observations of a continuous convex arc of major principal strains above the void, and the assumption that this is indicative of the stress behaviour. The observed results were also used to address the limitations in the current design methods related to the fill behaviour. Expansion in the soil was confined to a parabolic zone above the void estimated from the soil dilatancy, rather than a single, unique coefficient of expansion in the deforming soil. The zone of subsidence was characterised by the combination of a vertical prism and funnel to the surface, with the surface settlement profile better described by a Gaussian distribution rather than the parabolic profile used previously. An adaptation to the design methods for use with compacted clay liners was proposed by considering the clay as a beam with the maximum strain related to curvature and not elongation, and calculating the applied stress on the geosynthetic ignoring the clay arching. Analysis and interpretation of the centrifuge tests has thus given new insight into the soil and geosynthetic behaviour based on visual observations relevant to how these systems deform in practice. This has allowed the recommendation of more efficient design procedures and consequently will facilitate better predictions of geosynthetic-reinforced soil behaviour above voids.
2

Rational Modeling of Arching Action in Laterally Restrained Beams

Wu, Sixian 19 March 2013 (has links)
It is well known that arching action in reinforced concrete slabs resulting from surrounding restraining elements is responsible for much greater collapse loads than those estimated considering flexural effects only. However, the subject needs to be better understood and simplified if it is to be reliably applied in broader practice. This thesis presents a rational treatment of the problem. By limiting the scope of investigation to one-way slab systems, for the first time an explicit method of calculating the load-carrying capacity of elastic- plastic slab strips with a laterally rigidly restrained boundary condition is derived. Application of the proposed model to specimens selected from four experiment programs proves its reliability in ultimate strength calculations. The proposed model is then employed in a parametric study of structural responses of deck slab strips. The parametric study shows that a longer span, lightly reinforced deck slab system is still adequate in strength if it is cast in higher strength concrete and sufficient lateral restraint is available.
3

Rational Modeling of Arching Action in Laterally Restrained Beams

Wu, Sixian 19 March 2013 (has links)
It is well known that arching action in reinforced concrete slabs resulting from surrounding restraining elements is responsible for much greater collapse loads than those estimated considering flexural effects only. However, the subject needs to be better understood and simplified if it is to be reliably applied in broader practice. This thesis presents a rational treatment of the problem. By limiting the scope of investigation to one-way slab systems, for the first time an explicit method of calculating the load-carrying capacity of elastic- plastic slab strips with a laterally rigidly restrained boundary condition is derived. Application of the proposed model to specimens selected from four experiment programs proves its reliability in ultimate strength calculations. The proposed model is then employed in a parametric study of structural responses of deck slab strips. The parametric study shows that a longer span, lightly reinforced deck slab system is still adequate in strength if it is cast in higher strength concrete and sufficient lateral restraint is available.
4

Analysis of sequential active and passive arching in granular soils

Aqoub, K., Mohamed, Mostafa H.A., Sheehan, Therese 17 May 2018 (has links)
Yes / Arching in soils has received great attention due to its significance on the soil–underground structure interaction. The state of stress on underground structures as a result of cycles of active and passive arching was neither explored nor systematically assessed. In the present study, comprehensive investigation was carried out to examine: i. the effects of displacement direction to induce active or passive arching, ii. the behaviour of subsequent arching, iii. the effect of magnitude of initial displacement on the formation of arching and iv. the influence of soil height on sequential active and passive arching. The results showed that alternating the displacement of the underground inclusion exacerbated the formation of active and passive arching leading to a substantial reduction in shear resistance and stress redistribution. It is noted that sequentially alternating displacement of the underground inclusion was detrimental to the formation of full active and passive arches irrespective of the burial height.
5

Consolidation and Arching Potential of Slurry Backfill

2012 December 1900 (has links)
Soil-bentonite (SB) slurry walls are one of the most popular techniques for minimizing the horizontal migration of contaminants. Backfill arching, or “hang-up” of the backfilled slurry, on the wall trench has the potential to significantly reduce the effectiveness of these barriers. This research was conducted to supplement the design and installation of an 11,000 m long slurry wall at PotashCorp’s mine in Rocanville, Saskatchewan. The slurry wall is being installed through low permeability glacial till containing permeable granular zones. This study was undertaken to improve the understanding of vertical stress distribution in these deep barriers. In particular, the objective of this study was to develop an understanding of the factors controlling arching and hydraulic conductivity (k) of SB walls. Slurry wall “hang-up” or arching is dependent on shear along the wall of the trench and on a coefficient of lateral earth pressure (K). Consolidated drained (CD) shear box tests were conducted to study the shear strength parameters of the backfill mixes. Six inch proctor mold was modified with load cells on the side walls to measure horizontal stresses along with consolidation. This was used to calculate coefficient of lateral earth pressure, K (which is the ratio of horizontal to vertical effective stress). The results of the laboratory testing program found that K was relatively independent of the percentage of fines present in the SB mix. It also showed that backfill angle of internal friction and k of the backfill decreased with increased fines content. The results of the laboratory testing program were used to model the vertical stress distribution in deep walls. An analytical model (discrete model) and a coupled seepage stress-strain finite element model (FEM) were used to predict vertical stress changes with time and depth for the different backfill materials. The primary conclusion of this research is that slurry wall backfill arching or “hang-up” significantly delays the magnitude and timing of vertical stress build-up in backfill. This loss of vertical stress results in backfill with lower density and higher hydraulic conductivity. The situation was found to be most critical for deep narrow slurry walls. Any advantage in using a coarser graded backfill was offset by higher backfill hydraulic conductivity. The net result is that the upper portions of slurry walls may not be able to achieve their hydraulic conductivity objectives as soon as expected, if at all. In addition, the backfill in the upper portion of the trench may be susceptible to chemical attack and osmotic consolidation. Construction of a 2 m high surcharge berm over the slurry wall was found to increase vertical effective stress and result in significantly lower (2 to 8 times) hydraulic conductivity values in the top 5 metres of the trench. The final hydraulic conductivity (k) at a depth of 5 m was approximately 75 % lower with a surcharge berm. Thus, construction of a surcharge berm over the slurry wall helps to satisfy the k requirement for SB walls and lowers the risk of osmotic consolidation.
6

Effect of compaction on strength and arching of cohesive material in storage bins

Guan, Wei 09 April 2010 (has links)
An experimental study was carried out to determine the effect of compaction on arching of wheat flour in storage. A model bin 475 mm in height and 600 mm × 375 mm in cross-section was used to conduct tests and wheat flour at moisture contents (MC) of 8.6% and 14.2% was tested. Direct shear tests were performed to determine the angle of internal friction and cohesion of wheat flour subjected to various compaction pressures. It was observed that the internal friction angles were about the same for the wheat flour at two moisture contents (37.1 vs. 37.5), but cohesion for 14.2% MC was 32% higher than that for 8.6% MC. The flowability of wheat flour decreased with increasing compaction pressure sharply at the initial stage of compaction. Compaction led to a 64% increase in required hopper opening for arching-free flow for flour at 8.6% MC, and 49% at 14.2% MC. However, compaction pressure had little effect on arch formation after it reached above 5 kPa.
7

Effect of compaction on strength and arching of cohesive material in storage bins

Guan, Wei 09 April 2010 (has links)
An experimental study was carried out to determine the effect of compaction on arching of wheat flour in storage. A model bin 475 mm in height and 600 mm × 375 mm in cross-section was used to conduct tests and wheat flour at moisture contents (MC) of 8.6% and 14.2% was tested. Direct shear tests were performed to determine the angle of internal friction and cohesion of wheat flour subjected to various compaction pressures. It was observed that the internal friction angles were about the same for the wheat flour at two moisture contents (37.1 vs. 37.5), but cohesion for 14.2% MC was 32% higher than that for 8.6% MC. The flowability of wheat flour decreased with increasing compaction pressure sharply at the initial stage of compaction. Compaction led to a 64% increase in required hopper opening for arching-free flow for flour at 8.6% MC, and 49% at 14.2% MC. However, compaction pressure had little effect on arch formation after it reached above 5 kPa.
8

Arching Stability in Shallow Tunnels : A comparison between analytical and numerous solutions

Tvinghagen, Adam January 2016 (has links)
No description available.
9

Landslide Stabilization Using Drilled Shafts in Static and Dynamic Conditions

Erfani Joorabchi, Arash 01 August 2011 (has links)
No description available.
10

Determining and Validating the Three-dimensional Load Path Induced by Arching Action in Bridge Deck Slabs

Botticchio, Robert Michael 24 June 2014 (has links)
In this thesis, a load path caused by arching action in reinforced concrete slabs is described and validated using a three-dimensional model. Currently, the CHBDC enforces a 4 meter girder spacing requirement in the design of deck slabs. The aim of this thesis is to investigate the load path induced by arching action in deck slabs with a wide range of girder spacing. To do this, a two-dimensional model was developed to examine the path of horizontal stress and was validated using a FEM. A parametric study showed that girder spacing does not affect the development of restraining stress while cantilever width does. As well, cracking of the slab is necessary for arching action to occur. These results help with future development of a rational model to be used by bridge designers.

Page generated in 0.0757 seconds