Spelling suggestions: "subject:"arclength"" "subject:"archlength""
1 |
A parallel adaptive method for pseudo-arclength continuationDubitski, Alexander 01 August 2011 (has links)
We parallelize the pseudo-arclength continuation method for solving nonlinear systems
of equations. Pseudo-arclength continuation is a predictor-corrector method where the
correction step consists of solving a linear system of algebraic equations. Our algorithm
parallelizes adaptive step-length selection and inexact prediction. Prior attempts to parallelize
pseudo-arclength continuation are typically based on parallelization of the linear
solver which leads to completely solver-dependent software. In contrast, our method is
completely independent of the internal solver and therefore applicable to a large domain
of problems. Our software is easy to use and does not require the user to have extensive
prior experience with High Performance Computing; all the user needs to provide is the
implementation of the corrector step. When corrector steps are costly or continuation
curves are complicated, we observe up to sixty percent speed up with moderate numbers
of processors. We present results for a synthetic problem and a problem in turbulence. / UOIT
|
2 |
Grundläggande hyperbolisk geometri / Elements of Hyperbolic GeometryPersson, Anna January 2006 (has links)
<p>I denna uppsats presenteras grundläggande delar av hyperbolisk geometri. Uppsatsen är indelad i två kapitel. I första kapitlet studeras Möbiusavbildningar på Riemannsfären. Andra kapitlet presenterar modellen av hyperbolisk geometri i övre halvplanet H, skapad av Poincaré på 1880-talet.</p><p>Huvudresultatet i uppsatsen är Gauss – Bonnét´s sats för hyperboliska trianglar.</p> / <p>In this thesis we present fundamental concepts in hyperbolic geometry. The thesis is divided into two chapters. In the first chapter we study Möbiustransformations on the Riemann sphere. The second part of the thesis deal with hyperbolic geometry in the upper half-plane. This model of hyperbolic geometry was created by Poincaré in 1880.</p><p>The main result of the thesis is Gauss – Bonnét´s theorem for hyperbolic triangles.</p>
|
3 |
Grundläggande hyperbolisk geometri / Elements of Hyperbolic GeometryPersson, Anna January 2006 (has links)
I denna uppsats presenteras grundläggande delar av hyperbolisk geometri. Uppsatsen är indelad i två kapitel. I första kapitlet studeras Möbiusavbildningar på Riemannsfären. Andra kapitlet presenterar modellen av hyperbolisk geometri i övre halvplanet H, skapad av Poincaré på 1880-talet. Huvudresultatet i uppsatsen är Gauss – Bonnét´s sats för hyperboliska trianglar. / In this thesis we present fundamental concepts in hyperbolic geometry. The thesis is divided into two chapters. In the first chapter we study Möbiustransformations on the Riemann sphere. The second part of the thesis deal with hyperbolic geometry in the upper half-plane. This model of hyperbolic geometry was created by Poincaré in 1880. The main result of the thesis is Gauss – Bonnét´s theorem for hyperbolic triangles.
|
Page generated in 0.0381 seconds