• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Jet lent d’atomes d’argon métastables pour l’étude de l’échange de métastabilité, des interactions de van der Waals et des milieux d’indice négatif. / Metastable argon slow beam for studies of metastability exchange, van der Waals interactions and negative index media

Taillandier-Loize, Thierry 09 December 2014 (has links)
La thématique abordée dans cette thèse relève de la manipulation d’un jet d’atomes d’argon métastables (Ar* ³P2) dans différentes configurations. Premièrement, je présente l’échange de métastabilité entre un atome au fondamental et un atome excité à de faibles énergies de centre de masse (entre 4 et 9 meV). Je propose également l’interprétation théorique par une approche semi-classique (approximation JWKB) qui se révèle validée, dans ce domaine d’énergies, en comparaison avec la résolution exacte de l’équation de Schrödinger radiale mettant en jeu les potentiels concernés par la collision. Les sections efficaces absolues d’échanges, déduites d’une analyse en temps de vol du signal métastable, permettent de réaliser une comparaison sans biais avec les prédictions théoriques. Les caractéristiques d’un jet ralenti par effet Zeeman sont dégradées par le processus de ralentissement et le rende difficilement utilisable en deçà de quelques dizaines de mètres par seconde. C’est pourquoi, dans un deuxième temps, je présente la réalisation d’un jet lent original, issu d’un piège magnéto-optique et présentant des caractéristiques remarquables. La vitesse est accordable entre 10 et 100 m/s, la dispersion de vitesse relative est très faible (6 % à 20 m/s) et le flux est conséquent (10⁹ Ar*/s/sr), pour une ouverture angulaire standard (35 mrad FWHM). Ce nouveau dispositif permet de présenter certaines questions d’interférométrie et d’optique atomique telles que les interactions atome-surface de type van der Waals et l’étude de potentiels comobiles ainsi que leurs applications dans la réalisation de milieux d’indice négatif ou de ralentisseurs. / The topic of this thesis concerns the manipulation of a metastable argon (Ar* ³p2) atomic beam in different configurations. Firstly, I present the metastability exchange between an atom in fundamental state and an excited atom at low center of mass energy (between 4 and 9 meV). I also propose theoretical interpretation by a semi-classical approach (JWKB approximation) which is validated, in this field of energies, compared to the exact solution of the Schrödinger radial equation with potentials involved in collision. The absolute exchange cross-sections, derived from a time of flight analysis of metastable signal, enable an unbiased comparison with theoretical predictions. The characteristics of a Zeeman slowedbeam are degraded by the process of slowing down and makes it difficult to use below a few tens of meters per second. Secondly, I present the realization of an original slow beam from a magneto-optical trap and having outstanding features. The atomic velocity is tunable between 10 and 100 m/s, the relative velocity dispersion is very low (6 % at 20 m/s) and the flow is substantial, (4.7×108 Ar*/s/sr), for a standard angular aperture (35 mrad FWHM). This new device can present some issues in atomic interferometry and atomic optics such as van der Waals atom-surface interactions or study co-moving potentials and their applications in negative-index media for matter wave or slowers.
2

Réalisation d'un interféromètre atomique Stern-Gerlach à partir d'un jet supersonique d'argon métastable polarisé et analysé par lasers

Viaris de Lesegno, Bruno 20 December 2000 (has links) (PDF)
Ce travail relate la construction et les premiers résultats obtenus avec un interféromètre atomique Stern-Gerlach fonctionnant avec un jet supersonique d'atomes d'argon métastable, de moment angulaire 2, préparé et sélectionné en spin par lasers. Ses performances sont comparées à celles d'un interféromètre du même type fonctionnant avec un jet hyperthermique d'atomes d'hydrogène métastable, de moment angulaire 1. Pour réaliser un interféromètre Stern-Gerlach, il faut disposer d'une enceinte à vide traversée par un jet d'atomes polarisés puis analysés en spin après une évolution dans une zone de champ magnétique bien contrôlé. Ceci est réalisé par l'usage de diodes lasers asservies sur des raies atomiques associées à une optique fibrée. Les transitions choisies étaient fixées autour de 812 nm en polarisation sigma et 801 nm en polarisation pi. La zone de champ magnétique du coeur de l'interféromètre est réalisée par un circuit magnétique centré sur l'axe du jet atomique, protégé par un blindage magnétique. En employant un détecteur sensible à la position, nous avons mis en évidence la grande sensibilité de ce dispositif lorsqu'on emploie un jet supersonique à la place d'un jet effusif. Le signal interférométrique dépend alors bien plus finement des détails du profil magnétique. Cette propriété est mise en évidence par l'apparition dans les figures d'interférences de structures inattendues liées aux effets de phase géométrique traduisants l'évolution du spin 2 dans un champ magnétique conique. Ces résultats permettent de guider la réflexion sur l'application de cet interféromètre, tant vers des expériences visant la nanolithographie, qu'à des études plus fondamentales sur les phases quantiques, prolongeant les études déjà réalisées sur l'hydrogène.
3

Décélération Zeeman-Stern Gerlach d'un jet supersonique de particules paramagnétiques par une onde de champ magnétique progressive.

Trimeche, Azer 17 December 2013 (has links) (PDF)
Ce travail porte sur l'étude et la réalisation d'une nouvelle technique de décélération d'un jet supersonique de particules paramagnétiques en utilisant une onde de champ magnétique progressive co-mobile. Cette technique repose sur une méthode de ralentissement basée sur les forces de type Stern Gerlach agissant sur un système paramagnétique en mouvement en présence d'un champ magnétique co-propageant. Cette méthode très innovatrice a l'avantage de pouvoir s'appliquer à une grande palette d'espèces ouvrant ainsi de nouvelles possibilités d'applications. On décrit une approche théorique adaptée qui permet de faire un lien direct entre la théorie, la programmation des paramètres expérimentaux, les résultats obtenus et ce d'une manière systématique, rationnelle et prédictive.Ce mémoire est composé de trois parties. La première porte sur les forces décélératrices et le calcul des différentes forces, de type Stern Gerlach, utilisées dans nos expériences. Les formules établies dans cette partie sont essentielles pour l'interprétation des résultats expérimentaux. La deuxième partie porte sur le dispositif expérimental : le jet supersonique pré-refroidi, la zone d'interaction et la détection. On donne le détail de la réalisation des circuits créant les champs magnétiques nécessaires au guidage et à la décélération du jet. La troisième partie porte sur les résultats des expériences réalisées et leur interprétation directement à partir des équations du mouvement de l'effet Stern Gerlach. Des simulations sont présentées pour étayer les interprétations. On présente les résultats de décélération obtenus récemment sur l'argon et le néon métastables. Ces résultats valident clairement l'importance de l'ajout d'un champ magnétique uniforme qui définit un axe de quantification adiabatique global pour toutes les particules du jet et permet le découplage entre la précession des moments magnétiques et l'action des forces de gradient. Ces résultats mettent en évidence, aussi, l'effet de polarisation du jet qui dépend du sens relatif du champ magnétique uniforme ajouté par rapport à l'onde de champ magnétique progressive.Enfin, la compréhension et le contrôle de la dynamique du piégeage à une vitesse donnée, de l'accélération et de la décélération nécessitent le découplage entre les effets transverses et les effets longitudinaux de l'onde. Ces derniers sont clairement visibles quand le champ magnétique uniforme ajouté vient limiter les effets transverses de l'onde de champ magnétiques progressive. Les perspectives pour ce nouveau décélérateur Zeeman Stern Gerlach sont grandes. Un premier résultat de piégeage du di-azote métastable à 560m/s est présenté et ceci ouvre la voie pour décélérer les molécules paramagnétiques en jet supersonique pulsé. La décélération des radicaux libres et des neutrons est aussi envisageable.
4

Décélération Zeeman-Stern Gerlach d’un jet supersonique de particules paramagnétiques par une onde de champ magnétique progressive / Zeeman-Stern Gerlach deceleration of supersonic beams of paramagnetic particles with traveling waves of magnetic field

Trimeche, Azer 17 December 2013 (has links)
Ce travail porte sur l’étude et la réalisation d’une nouvelle technique de décélération d’un jet supersonique de particules paramagnétiques en utilisant une onde de champ magnétique progressive co-mobile. Cette technique repose sur une méthode de ralentissement basée sur les forces de type Stern Gerlach agissant sur un système paramagnétique en mouvement en présence d’un champ magnétique co-propageant. Cette méthode très innovatrice a l’avantage de pouvoir s’appliquer à une grande palette d’espèces ouvrant ainsi de nouvelles possibilités d’applications. On décrit une approche théorique adaptée qui permet de faire un lien direct entre la théorie, la programmation des paramètres expérimentaux, les résultats obtenus et ce d’une manière systématique, rationnelle et prédictive.Ce mémoire est composé de trois parties. La première porte sur les forces décélératrices et le calcul des différentes forces, de type Stern Gerlach, utilisées dans nos expériences. Les formules établies dans cette partie sont essentielles pour l’interprétation des résultats expérimentaux. La deuxième partie porte sur le dispositif expérimental : le jet supersonique pré-refroidi, la zone d’interaction et la détection. On donne le détail de la réalisation des circuits créant les champs magnétiques nécessaires au guidage et à la décélération du jet. La troisième partie porte sur les résultats des expériences réalisées et leur interprétation directement à partir des équations du mouvement de l’effet Stern Gerlach. Des simulations sont présentées pour étayer les interprétations. On présente les résultats de décélération obtenus récemment sur l’argon et le néon métastables. Ces résultats valident clairement l’importance de l’ajout d’un champ magnétique uniforme qui définit un axe de quantification adiabatique global pour toutes les particules du jet et permet le découplage entre la précession des moments magnétiques et l’action des forces de gradient. Ces résultats mettent en évidence, aussi, l’effet de polarisation du jet qui dépend du sens relatif du champ magnétique uniforme ajouté par rapport à l’onde de champ magnétique progressive.Enfin, la compréhension et le contrôle de la dynamique du piégeage à une vitesse donnée, de l’accélération et de la décélération nécessitent le découplage entre les effets transverses et les effets longitudinaux de l’onde. Ces derniers sont clairement visibles quand le champ magnétique uniforme ajouté vient limiter les effets transverses de l’onde de champ magnétiques progressive. Les perspectives pour ce nouveau décélérateur Zeeman Stern Gerlach sont grandes. Un premier résultat de piégeage du di-azote métastable à 560m/s est présenté et ceci ouvre la voie pour décélérer les molécules paramagnétiques en jet supersonique pulsé. La décélération des radicaux libres et des neutrons est aussi envisageable. / This work focuses on the study and implementation of a new technique of deceleration of a supersonic beam of paramagnetic particles using a co-moving progressive wave of magnetic field. This technique relies on a method of slowing based on Stern-Gerlach forces acting on a paramagnetic system in motion in the presence of a co-propagating magnetic field. This highly innovative approach has the advantage of being applicable to a wide range of species and opens up new opportunities. A suitable theoretical approach is followed, that allows for a direct link between theory, programming of experimental parameters, and experimental results in a systematic, rational and predictive manner.This thesis is composed of three parts. The first concerns the calculation of the various Stern Gerlach forces used in our experiments to decelerate the paramagnetic particles. Formulas established in this section are essential for the interpretation of experimental results. The second part is devoted to the experimental device: the creation of the cooled supersonic beam, interaction zone and detection. A separate chapter is devoted to the detailed description of the different setups of coils used to create the magnetic fields necessary to guide and to decelerate the particles of the beam.The third part is devoted to the experimental results and their direct interpretation using the equations of motion in Stern Gerlach forces. Simulations are presented to embody the interpretations. We present results about the deceleration of metastable argon and neon atoms. These results validate the significance of the addition of a uniform magnetic field defining a global adiabatic quantization axis for all the particles in the beam. This realizes the decoupling between the precession of the magnetic moments and Stern Gerlach forces. The results demonstrate the polarization effect of the beam that depends on the direction of the added uniform magnetic field relative to the progressive wave of the magnetic field.Finally, the understanding and control of the dynamics of trapping at a given speed, acceleration and deceleration require decoupling between the transverse and longitudinal effects of the wave. These effects are clearly visible when the added uniform magnetic field limits the transverse effects of the progressive wave of magnetic field. The outlooks for the new Zeeman Stern Gerlach decelerator are numerous. A first result of trapping di-nitrogen metastable at 560m/s is presented and the road is open to decelerate paramagnetic molecules in pulsed supersonic jet. Deceleration free radicals and neutrons are also possible.

Page generated in 0.0601 seconds