• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Docking de compostos da família das ariloxazinas em enzimas relacionadas com a malária / Docking of arilloxazines in enzymes related to malaria

Corrêa, Denis da Silva 06 August 2010 (has links)
Made available in DSpace on 2016-08-17T18:39:34Z (GMT). No. of bitstreams: 1 3220.pdf: 7184046 bytes, checksum: d31437c1aa1937336c7b8cb91918b19b (MD5) Previous issue date: 2010-08-06 / Universidade Federal de Minas Gerais / Malaria disease, caused mainly by Plasmodium falciparum parasite, afflicts about 500 million people and causes nearly one million deaths every year. For the development of new drugs against this disease, one possible approach is to identify an enzyme that plays a key role in P. falciparum development and presents significantly different properties from the corresponding human one. These differences can be exploited in the design of specific inhibitors of the parasite s protein, thus, three different enzymes were selected as possible targets. As there are evidences suggesting that increasing oxidative stress can effectively inhibit the growth of the malarial parasite the enzyme Glutathione Reductase of P. falciparum (PfGR), responsible for the parasite s antioxidant defense, has become a potential target for the design and development of inhibitors. The second target was the P. falciparum Dihydrofolate Reductase-Thymidylate Synthase (PfDHFR-TS), and in this case blocking its action stops the dTMP production and DNA synthesis in the parasite. The third chosen target was the P. falciparum Lactate Dehydrogenase (PfLDH), whose inhibition interrupts the ATP formation and thus causing the death of the parasite. So that a family of arilloxazines compounds, together with chloroquine and methylene blue, were studied by means of docking simulations in the binding sites of these enzymes and also in the corresponding human enzymes for comparison. The three-dimensional structures of the enzymes and of chloroquine and methylene blue were obtained from the Protein Data Bank (PDB). The structures of the arilloxazines compounds, in turn, were obtained by molecular modeling with HyperChem 6.01 and MOPAC2009 programs, using as starting models similar crystallographic structures deposited in the Cambridge Structural Database. Docking simulations were performed using GOLD 4.0.1. The docking results showed that the enzymes PfGR and PfDHFR-TS are not the preferential targets of chloroquine. For the methylene blue it was possible to elucidate its binding mode in hGR and PfGR. Regarding the arilloxazines it was possible to show that they present their higher affinity for hGR, followed by PfGR, hDHFR, PfDHFR-TS, PfLDH and hLDH. In the case of GRs, the interface site was the preferred binding site. The results suggest that if arilloxazines compounds with higher affinity for PfGR are desirable then a pentafluorophenyl should be attached at the N10 position, as in the 2e compound. When searching for arilloxazines with higher affinity for PfLDH, it seems to be desirable a carboxymethyl group at the N3 position (as in 5b) and a pentafluorophenyl group at N10 (as in 2e). Finally, the results suggest that in general the studied arilloxazines probably will present a higher affinity for hDHFR than PfDHFR-TS. All these results are an important starting point for the design of new arilloxazines ligands so that they can be used as lead compounds in the search for new drugs against malaria. / A malária, causada principalmente pelo Plasmodium falciparum, atinge cerca de 500 milhões de pessoas e causa aproximadamente um milhão de mortes todos os anos. Para o desenvolvimento de novos fármacos contra esta doença, uma das abordagens possível é identificar uma enzima que desempenhe papel vital no desenvolvimento do P. falciparum e apresente propriedades significantemente diferentes das enzimas humanas correspondentes, de modo que tais diferenças possam ser exploradas no design de inibidores específicos à proteína do parasita. Existem evidências sugerindo que aumentar o estresse oxidativo pode inibir eficientemente o crescimento do parasita causador da malária e, portanto, a enzima Glutationa Redutase do P. falciparum (GRPf), responsável por sua defesa antioxidante, tornou-se um alvo em potencial para o desenvolvimento de inibidores. Também, o bloqueio da ação da Diidrofolato Redutase-Timidilato Sintase do P. falciparum (DHFR-TSPf) interrompe a produção de dTMP e a síntese de DNA no parasita. Ainda, espera-se que a inibição da Lactato Desidrogenase do P. falciparum (LDHPf) interrompa a produção de ATP no parasita e, consequentemente, cause sua morte. Portanto, estudou-se o comportamento de compostos da família das ariloxazinas, da cloroquina e do azul de metileno nos sítios de ligação destas enzimas, além das enzimas humanas correspondentes para fins de comparação, por meio de cálculos de docking. As estruturas tridimensionais das enzimas foram obtidas no Protein Data Bank (PDB). As estruturas dos inibidores da família das ariloxazinas, por sua vez, foram obtidas por meio de modelagem molecular, utilizando os programas HyperChem 6.01 e MOPAC2009, a partir de estruturas cristalográficas semelhantes obtidas no Cambridge Structural Database; já as estruturas da cloroquina e do azul de metileno foram obtidas também no PDB. Os cálculos de docking destes compostos nos sítios de ligação das enzimas estudadas foram realizados utilizando o programa GOLD 4.0.1. Com base nos resultados de docking, sugere-se que as enzimas GRPf e DHFR-TSPf não são alvos preferenciais da cloroquina. Também, pôde-se elucidar o possível modo de ligação do azul de metileno nas enzimas GRh e GRPf. No geral, foi possível sugerir ainda que as ariloxazinas devam apresentar maior afinidade pela GRh, seguida por GRPf, DHFRh, DHFR-TSPf, LDHPf e LDHh, nesta ordem. Nas GRs, o sítio da interface foi o sítio preferencial de ligação. Para se buscar inibidores da família das ariloxazinas com maior afinidade pela GRPf, sugere-se considerar um pentafluorfenil como substituinte na posição N10, como no composto 2e. Ainda, na busca por ariloxazinas com maior afinidade pela LDHPf, sugere-se considerar um carboximetil na posição N3 (como o de 5b) e um pentafluorfenil na posição N10 (como em 2e). Por fim, foi obtido que as ariloxazinas estudadas possivelmente apresentarão, em geral, uma maior afinidade pela DHFRh do que pela DHFR-TSPf. Estes dados podem ser tomados como ponto de partida para o design de novos compostos da família das ariloxazinas, a fim de que possam atuar como compostos líderes na busca por novos fármacos contra a malária.

Page generated in 0.0403 seconds