Spelling suggestions: "subject:"arnoldi method"" "subject:"arnoldii method""
1 |
Symmetries in the kinematic dynamos and hydrodynamic instabilities of the ABC flowsJones, Samuel Edward January 2013 (has links)
This thesis primarily concerns kinematic dynamo action by the 1:1:1 ABC flow, in the highly conducting limit of large magnetic Reynolds number Rm. The flow possesses 24 symmetries, with a symmetry group isomorphic to the group O24 of orientation-preserving transformations of a cube. These symmetries are exploited to break up the linear eigenvalue problem into five distinct symmetry classes, which we label I-V. The thesis discusses how to reduce the scale of the numerical problem to a subset of Fourier modes for a magnetic field in each class, which then may be solved independently to obtain distinct branches of eigenvalues and magnetic field eigenfunctions. Two numerical methods are employed: the first is to time step a magnetic field in a given symmetry class and obtain the growth rate and frequency by measuring the magnetic energy as a function of time. The second method involves a more direct determination of the eigenvalue using the eigenvalue solver ARPACK for sparse matrix systems, which employs an implicitly restarted Arnoldi method. The two methods are checked against each other, and compared for efficiency and reliability. Eigenvalue branches for each symmetry class are obtained for magnetic Reynolds numbers Rm up to 10^4 together with spectra and magnetic field visualisations. A sequence of branches emerges as Rm increases and the magnetic field structures in the different branches are discussed and compared. All symmetry classes are found to contain a dynamo, though dynamo effectiveness varies greatly between classes, suggesting that the symmetries play an important role in the field amplification mechanisms. A closely related problem, that of linear hydrodynamic stability, is also explored in the limit of large Reynolds number Re. As the same symmetry considerations apply, the five symmetry classes of the linear instability can be resolved independently, reducing the size of the problem and allowing exploration of the effects of the symmetries on instability growth rate. Results and visualisations are obtained for all five classes for Re up to 10^3, with comparisons drawn between the structures seen in each class and with those found in the analogous magnetic problem. For increasing Re, multiple mode crossings are observed within each class, with remarkably similar growth rates seen in all classes at Re=10^3, highlighting a lack of dependence on the symmetries of the instability, in contrast with the magnetic problem. This thesis also investigates the problem of large-scale magnetic fields in the 1:1:1 ABC flow through the introduction of Bloch waves that modify the periodicity of the magnetic field relative to the flow. Results are found for a field with increased periodicity in a single direction for Rm up to 10^3; it is established that the optimal scale for dynamo action varies as Rm increases, settling on a consistent scale for large Rm. The emerging field structures are studied and linked with those of the original dynamo problem. On contrasting this method with a previous study in which the flow is instead rescaled, it is shown that the use of Bloch waves drastically increases the range of possible scales, whilst cutting required computing time. Through a multiple-scale analysis, the contribution from the alpha-effect is calculated for the 1:1:1 ABC flow and is seen in growth rates for Rm << 1.
|
2 |
Model reduction for active control design using multiple-point Arnoldi methodsLassaux, G., Willcox, Karen E. 01 1900 (has links)
A multiple-point Arnoldi method is derived for model reduction of computational fluid dynamic systems. By choosing the number of frequency interpolation points and the number of Arnoldi vectors at each frequency point, the user can select the accuracy and range of validity of the resulting reduced-order model while balancing computational expense. The multiple-point Arnoldi approach is combined with a singular value decomposition approach similar to that used in the proper orthogonal decomposition method. This additional processing of the basis allows a further reduction in the number of states to be obtained, while retaining a significant computational cost advantage over the proper orthogonal decomposition. Results are presented for a supersonic diffuser subject to mass flow bleed at the wall and perturbations in the incoming flow. The resulting reduced-order models capture the required dynamics accurately while providing a significant reduction in the number of states. The reduced-order models are used to generate transfer function data, which are then used to design a simple feedforward controller. The controller is shown to work effectively at maintaining the average diffuser throat Mach number. / Singapore-MIT Alliance (SMA)
|
3 |
Inner-outer iterative methods for eigenvalue problems : convergence and preconditioningFreitag, Melina January 2007 (has links)
Many methods for computing eigenvalues of a large sparse matrix involve shift-invert transformations which require the solution of a shifted linear system at each step. This thesis deals with shift-invert iterative techniques for solving eigenvalue problems where the arising linear systems are solved inexactly using a second iterative technique. This approach leads to an inner-outer type algorithm. We provide convergence results for the outer iterative eigenvalue computation as well as techniques for efficient inner solves. In particular eigenvalue computations using inexact inverse iteration, the Jacobi-Davidson method without subspace expansion and the shift-invert Arnoldi method as a subspace method are investigated in detail. A general convergence result for inexact inverse iteration for the non-Hermitian generalised eigenvalue problem is given, using only minimal assumptions. This convergence result is obtained in two different ways; on the one hand, we use an equivalence result between inexact inverse iteration applied to the generalised eigenproblem and modified Newton's method; on the other hand, a splitting method is used which generalises the idea of orthogonal decomposition. Both approaches also include an analysis for the convergence theory of a version of inexact Jacobi-Davidson method, where equivalences between Newton's method, inverse iteration and the Jacobi-Davidson method are exploited. To improve the efficiency of the inner iterative solves we introduce a new tuning strategy which can be applied to any standard preconditioner. We give a detailed analysis on this new preconditioning idea and show how the number of iterations for the inner iterative method and hence the total number of iterations can be reduced significantly by the application of this tuning strategy. The analysis of the tuned preconditioner is carried out for both Hermitian and non-Hermitian eigenproblems. We show how the preconditioner can be implemented efficiently and illustrate its performance using various numerical examples. An equivalence result between the preconditioned simplified Jacobi-Davidson method and inexact inverse iteration with the tuned preconditioner is given. Finally, we discuss the shift-invert Arnoldi method both in the standard and restarted fashion. First, existing relaxation strategies for the outer iterative solves are extended to implicitly restarted Arnoldi's method. Second, we apply the idea of tuning the preconditioner to the inner iterative solve. As for inexact inverse iteration the tuned preconditioner for inexact Arnoldi's method is shown to provide significant savings in the number of inner solves. The theory in this thesis is supported by many numerical examples.
|
4 |
Análise da estabilidade global de escoamentos compressíveis / Global instability analysis of compressible flowGennaro, Elmer Mateus 08 August 2012 (has links)
A investigação dos mecanismos de instabilidade pode ter um papel importante no entendimento do processo laminar para turbulento de um escoamento. Análise de instabilidade de uma camada limite de uma linha de estagnação compressível foi realizada no contexto de teoria linear BiGlobal. O estudo dos mecanismos de instabilidade deste escoamento pode proporcionar uma visão útil no desenho aerodinâmico das asas. Um novo procedimento foi desenvolvido e implementado computacionalmente de maneira sequencial e paralela para o estudo de instabilidade BiGlobal. O mesmo baseia-se em formar a matriz esparsa associada ao problema discretizado por dois métodos: pontos de colocação de Chebyshev-Gauss-Lobatto e diferenças finitas, além das combinações destes métodos. Isto permitiu o uso de bibliotecas computacionais eficientes para resolver o sistema linear associado ao problema de autovalor utilizando o algoritmo de Arnoldi. O desempenho do método numérico e código computacional proposto são analisados do ponto de vista do uso de métodos de ordenação dos elementos da matriz, coeficientes de preenchimento, memória e tempo computacional a fim de determinar a solução mais eficiente para um problema físico geral com técnicas de matrizes esparsas. Um estudo paramétrico da instabilidade da camada limite de uma linha de estagnação foi realizado incluindo o estudo dos efeitos de compressibilidade. O excelente desempenho código computacional permitiu obter as curvas neutras e seus respectivos valores críticos para a faixa de número de Mach 0 \'< OU =\' Ma \'< OU =\' 1. Os resultados confirmam a teoria assintótica apresentada por (THEOFILIS; FEDOROV; COLLIS, 2004) e mostram que o incremento do número de Mach reduz o numero de Reynolds crítico e a faixa instável do número de ondas. / Investigation of linear instability mechanisms is essential for understanding the process of transition from laminar to turbulent flow. An algorithm for the numerical solution of the compressible BiGlobal eigenvalue problem is developed. This algorithm exploits the sparsity of the matrices resulting from the spatial discretization of the enigenvalue problem in order to improve the performance in terms of both memory and CPU time over previous dense algebra solutions. Spectral collocation and finite differences spatial discretization methods are implemented, and a performance study is carried out in order to determine the best practice for the efficient solution of a general physical problem with sparse matrix techniques. A combination of spectral collocation and finite differences can further improve the performance. The code developed is then applied in order to revisit and complete the parametric analyses on global instability of the compressible swept Hiemenz flow initiated in (THEOFILIS; FEDOROV; COLLIS, 2004) and obtain neutral curves of this flow as a function of the Mach number in the 0 \'< OU =\' Ma \'< OU =\' 1 range. The present numerical results fully confirm the asymptotic theory results presented in (THEOFILIS; FEDOROV; COLLIS, 2004). This work presents a complete parametric study of the instability properties of modal three dimensional disturbances in the subsonic range for the flow conguration at hand. Up to the subsonic maximum Mach number value studied, it is found that an increase in this parameter reduces the critical Reynolds number and the range of the unstable spanwise wavenumbers.
|
5 |
Análise da estabilidade global de escoamentos compressíveis / Global instability analysis of compressible flowElmer Mateus Gennaro 08 August 2012 (has links)
A investigação dos mecanismos de instabilidade pode ter um papel importante no entendimento do processo laminar para turbulento de um escoamento. Análise de instabilidade de uma camada limite de uma linha de estagnação compressível foi realizada no contexto de teoria linear BiGlobal. O estudo dos mecanismos de instabilidade deste escoamento pode proporcionar uma visão útil no desenho aerodinâmico das asas. Um novo procedimento foi desenvolvido e implementado computacionalmente de maneira sequencial e paralela para o estudo de instabilidade BiGlobal. O mesmo baseia-se em formar a matriz esparsa associada ao problema discretizado por dois métodos: pontos de colocação de Chebyshev-Gauss-Lobatto e diferenças finitas, além das combinações destes métodos. Isto permitiu o uso de bibliotecas computacionais eficientes para resolver o sistema linear associado ao problema de autovalor utilizando o algoritmo de Arnoldi. O desempenho do método numérico e código computacional proposto são analisados do ponto de vista do uso de métodos de ordenação dos elementos da matriz, coeficientes de preenchimento, memória e tempo computacional a fim de determinar a solução mais eficiente para um problema físico geral com técnicas de matrizes esparsas. Um estudo paramétrico da instabilidade da camada limite de uma linha de estagnação foi realizado incluindo o estudo dos efeitos de compressibilidade. O excelente desempenho código computacional permitiu obter as curvas neutras e seus respectivos valores críticos para a faixa de número de Mach 0 \'< OU =\' Ma \'< OU =\' 1. Os resultados confirmam a teoria assintótica apresentada por (THEOFILIS; FEDOROV; COLLIS, 2004) e mostram que o incremento do número de Mach reduz o numero de Reynolds crítico e a faixa instável do número de ondas. / Investigation of linear instability mechanisms is essential for understanding the process of transition from laminar to turbulent flow. An algorithm for the numerical solution of the compressible BiGlobal eigenvalue problem is developed. This algorithm exploits the sparsity of the matrices resulting from the spatial discretization of the enigenvalue problem in order to improve the performance in terms of both memory and CPU time over previous dense algebra solutions. Spectral collocation and finite differences spatial discretization methods are implemented, and a performance study is carried out in order to determine the best practice for the efficient solution of a general physical problem with sparse matrix techniques. A combination of spectral collocation and finite differences can further improve the performance. The code developed is then applied in order to revisit and complete the parametric analyses on global instability of the compressible swept Hiemenz flow initiated in (THEOFILIS; FEDOROV; COLLIS, 2004) and obtain neutral curves of this flow as a function of the Mach number in the 0 \'< OU =\' Ma \'< OU =\' 1 range. The present numerical results fully confirm the asymptotic theory results presented in (THEOFILIS; FEDOROV; COLLIS, 2004). This work presents a complete parametric study of the instability properties of modal three dimensional disturbances in the subsonic range for the flow conguration at hand. Up to the subsonic maximum Mach number value studied, it is found that an increase in this parameter reduces the critical Reynolds number and the range of the unstable spanwise wavenumbers.
|
6 |
Analysis and control of transitional shear flows using global modesBagheri, Shervin January 2010 (has links)
In this thesis direct numerical simulations are used to investigate two phenomenain shear flows: laminar-turbulent transition over a flat plate and periodicvortex shedding induced by a jet in cross flow. The emphasis is on understanding and controlling the flow dynamics using tools from dynamical systems and control theory. In particular, the global behavior of complex flows is describedand low-dimensional models suitable for control design are developed; this isdone by decomposing the flow into global modes determined from spectral analysisof various linear operators associated with the Navier–Stokes equations.Two distinct self-sustained global oscillations, associated with the sheddingof vortices, are identified from direct numerical simulations of the jet incrossflow. The investigation is split into a linear stability analysis of the steadyflow and a nonlinear analysis of the unsteady flow. The eigenmodes of theNavier–Stokes equations, linearized about an unstable steady solution revealthe presence of elliptic, Kelvin-Helmholtz and von K´arm´an type instabilities.The unsteady nonlinear dynamics is decomposed into a sequence of Koopmanmodes, determined from the spectral analysis of the Koopman operator. Thesemodes represent spatial structures with periodic behavior in time. A shearlayermode and a wall mode are identified, corresponding to high-frequency andlow-frequency self-sustained oscillations in the jet in crossflow, respectively.The knowledge of global modes is also useful for transition control, wherethe objective is to reduce the growth of small-amplitude disturbances to delaythe transition to turbulence. Using a particular basis of global modes, knownas balanced modes, low-dimensional models that capture the behavior betweenactuator and sensor signals in a flat-plate boundary layer are constructed andused to design optimal feedback controllers. It is shown that by using controltheory in combination with sensing/actuation in small, localized, regionsnear the rigid wall, the energy of disturbances may be reduced by an order of magnitude.
|
7 |
Méthodes par blocs adaptées aux matrices structurées et au calcul du pseudo-inverse / Block methods adapted to structured matrices and calculation of the pseudo-inverseArchid, Atika 27 April 2013 (has links)
Nous nous intéressons dans cette thèse, à l'étude de certaines méthodes numériques de type krylov dans le cas symplectique, en utilisant la technique de blocs. Ces méthodes, contrairement aux méthodes classiques, permettent à la matrice réduite de conserver la structure Hamiltonienne ou anti-Hamiltonienne ou encore symplectique d'une matrice donnée. Parmi ces méthodes, nous nous sommes intéressés à la méthodes d'Arnoldi symplectique par bloc que nous appelons aussi bloc J-Arnoldi. Notre but essentiel est d’étudier cette méthode de façon théorique et numérique, sur la nouvelle structure du K-module libre ℝ²nx²s avec K = ℝ²sx²s où s ≪ n désigne la taille des blocs utilisés. Un deuxième objectif est de chercher une approximation de l'epérateur exp(A)V, nous étudions en particulier le cas où A est une matrice réelle Hamiltonnienne et anti-symétrique de taille 2n x 2n et V est une matrice rectangulaire ortho-symplectique de taille 2n x 2s sur le sous-espace de Krylov par blocs Km(A,V) = blockspan {V,AV,...,Am-1V}, en conservant la structure de la matrice V. Cette approximation permet de résoudre plusieurs problèmes issus des équations différentielles dépendants d'un paramètre (EDP) et des systèmes d'équations différentielles ordinaires (EDO). Nous présentons également une méthode de Lanczos symplectique par bloc, que nous nommons bloc J-Lanczos. Cette méthode permet de réduire une matrice structurée sous la forme J-tridiagonale par bloc. Nous proposons des algorithmes basés sur deux types de normalisation : la factorisation S R et la factorisation Rj R. Dans une dernière partie, nous proposons un algorithme qui généralise la méthode de Greville afin de déterminer la pseudo inverse de Moore-Penros bloc de lignes par bloc de lignes d'une matrice rectangulaire de manière itérative. Nous proposons un algorithme qui utilise la technique de bloc. Pour toutes ces méthodes, nous proposons des exemples numériques qui montrent l'efficacité de nos approches. / We study, in this thesis, some numerical block Krylov subspace methods. These methods preserve geometric properties of the reduced matrix (Hamiltonian or skew-Hamiltonian or symplectic). Among these methods, we interest on block symplectic Arnoldi, namely block J-Arnoldi algorithm. Our main goal is to study this method, theoretically and numerically, on using ℝ²nx²s as free module on (ℝ²sx²s, +, x) with s ≪ n the size of block. A second aim is to study the approximation of exp (A)V, where A is a real Hamiltonian and skew-symmetric matrix of size 2n x 2n and V a rectangular matrix of size 2n x 2s on block Krylov subspace Km (A, V) = blockspan {V, AV,...Am-1V}, that preserve the structure of the initial matrix. this approximation is required in many applications. For example, this approximation is important for solving systems of ordinary differential equations (ODEs) or time-dependant partial differential equations (PDEs). We also present a block symplectic structure preserving Lanczos method, namely block J-Lanczos algorithm. Our approach is based on a block J-tridiagonalization procedure of a structured matrix. We propose algorithms based on two normalization methods : the SR factorization and the Rj R factorization. In the last part, we proposea generalized algorithm of Greville method for iteratively computing the Moore-Penrose inverse of a rectangular real matrix. our purpose is to give a block version of Greville's method. All methods are completed by many numerical examples.
|
Page generated in 0.1526 seconds