Spelling suggestions: "subject:"arrels"" "subject:"hrrels""
1 |
Efectes compensatoris entre arrels d'una mateixa planta de gira-sol sotmesa a estrèsBenet i Pifarré, Josep Ignasi 13 November 2006 (has links)
L'objecte d'aquesta tesi és estudiar els efectes que provoquen diferents estressos radicals (hídric, fred, dèficit nutricional) aplicats a part del sistema radical en: l'intercanvi de gasos de la capçada (Pn, E, gs), el potencial hídric del brot i l'activitat radical (absorció iònica, respiració, càrrega xilemàtica). Per a tal finalitat s'han emprat plantes de gira-sol ("Helianthus annuus" cv. Solmax) crescudes en medi hidropònic líquid, emprant la tècnica de separació d'arrel en vàries parts regulades independentment.Es tracta de donar resposta a la pregunta de com modula la planta l'activitat de cada part de l'arrel en un medi heterogeni? S'ha estudiat que fan les arrels estressades, obtenint una davallada en la seva activitat (absorció iònica i respiració) provocada pels diferents estressos. També s'ha comprovat que la part aèria no es veia afectada en cap dels tractaments perque les arrels complementàries mostraven una clara resposta compensatòria a la disminució d'activitat de les arrels estressades, augmentant les seves taxes d'absorció iònica i respiració radical. / "Efectos compensatorios entre raíces de una misma planta de girasol sometida a estrés"RESUMEN:Estudiar los efectos que provocan diferentes estreses radiculares (hídrico, frío, déficit nutricional) aplicados a parte del sistema radical en: intercambio de gases de la parte aérea (Pn, E, gs), el potencial hídrico del brote y la actividad radicular (absorción iónica, respiración, carga xilemática). Para esta finalidad se han utilizado plantas de girasol ("Helianthus annuus" cv. Solmax) crecidas en medio hidropónico líquido, utilizando la técnica de separación radicular en varias partes reguladas independientemente.Se trata de dar respuesta a la pregunta de cómo modula la planta la actividad de cada parte de la raíz en un medio heterogéneo?. Se ha estudiado que hacen las raíces estresadas, obteniendo una disminución en su actividad (absorción iónica y respiración) provocada por los diferentes estreses. También se ha comprobado que la parte aérea no se vió afectada en ninguno de los tratamientos porque las raíces complementarias mostravan una clara respuesta compensatoria a la disminución de actividad de las raíces estresadas, aumentando sus tasas de absorción iónica y respiración radicular. / DISSERTATION TITLE:"Compensatory effects between roots of a sunflower plant subject to a stress"ABSTRACT:To study the effects promoted by root stresses (hydric, cooling, nutrient deficiency) provoqued to a part of the root system in: shoot gases exchange (Pn, E, gs), hydric potential and root activity (ionic absorption, respiration and xylem uptake). In order to this we used sunflower plants (Helianthus annuus cv. Solmax) grown in hydroponical liquid in split-root system.The fact is to answer the question, how the plant module the activity of each part of the root in a heterogeneous environment?. We studied the stressed roots and we saw a decrease in its activity (ionic absorption and respiration) lead to different stresses. We saw too that shoot is not affected by root stresses because complementary roots showed an evident compensatory answer to activity decrease of stressed roots, increasing its absorption taxes and root respiration.
|
2 |
Presentación, desarrollo y validación de la técnica Barcelona en la aplicación de los electroestimuladores de raíces sacras anteriores implantados (S.A.R.S), para el control esfinteriano en los lesionados medularesBorau Duran, Albert 22 June 2004 (has links)
Las lesiones de la médula espinal comportan parálisis, falta de sensibilidad y alteraciones en el funcionamiento de los esfínteres (urinario y rectal) y estos a su vez condicionan infecciones urinarias, formación de cálculos o deterioro de los riñones; en el ámbito intestinal, estreñimiento. En el hombre también disfunción eréctil.Los mecanismos conservadores aseguran el vaciado de la vejiga mediante cateterismos o del recto mediante fármacos y maniobras. Algunos fármacos también facilitan la erección del pene, pero cuando estas soluciones no son satisfactorias, se presenta la ocasión para el implante de los sistemas de electroestimulación de las raíces nerviosas sacras (S.A.R.S.).Con este trabajo presentamos sus indicaciones y su funcionamiento, comparando diferentes estrategias quirúrgicas para su implante: la técnica Barcelona, diseñada por nuestro equipo, y la técnica Extradural, considerada de segunda elección por los equipos que implantan el S.A.R.S. en Europa.A fin de medir la validez de la técnica Barcelona vs. Extradural, se ha seguido una metodología de validación basada en la medida de diversos parámetros previos y posteriores a la intervención quirúrgica. A los resultados obtenidos se les ha aplicado un tratamiento estadístico según el test t de Student para analizar su significación estadística.Se compara la composición del grupo general de S.A.R.S. (60 pacientes) con la población general (grupo control, compuesto por 2.550 lesionados medulares atendidos entre los años 1990 y 2000 en Instituto Guttmann), para conocer su representatividad. El grupo S.A.R.S. es más joven, pero con lesiones más graves y su tipología casi igual para hombres que para mujeres.De los estudios de aplicabilidad se obtiene una comparación entre técnicas, que no muestra diferencias significativas entre ellas en los parámetros clínicos.De los estudios de eficacia, se deduce que tampoco hay diferencias, tanto en el aspecto clínico como en los aspectos de calidad de vida, valorados por el test S.I.P. (Sickness Impact Profile test) y que las puntuaciones sobre percepción del bienestar son superiores a las del grupo control formado por 250 lesionados medulares que acuden a su revisión médica periódica, sin patología manifiesta.En la discusión, se compara los resultados de la técnica Barcelona y Extradural, con los publicados en la bibliografía, que expresan los obtenidos por la técnica Intradural original. Nuestra casuística se encuentra entre las mejores publicadas.Se concluye validando y recomendando la estrategia Barcelona y Extradural, que se complementan, para el implante de los S.A.R.S. en lesionados medulares, como tratamiento definitivo de sus trastornos esfinterianos.
|
3 |
Desenvolupament de nous mètodes per a la resolució d'equacions i sistemes d'equacions no lineals i AplicacionsTeruel Ferragud, Carles 10 September 2018 (has links)
La necesidad de resolver ecuaciones y sistemas de ecuaciones no lineales surge de manera natural en discretizar las ecuaciones integro-diferenciales que modelan los problemas de los que se encargan las diferentes ramas de las ciencias y la ingeniería. Actualmente, se puede hacer uso de los ordenadores como herramientas para facilitar todas las tareas en torno a su resolución. Con la mejora de los dispositivos, el desarrollo de las técnicas de computación y la aritmética de precisión variable, se ha generalizado la demanda de métodos iterativos que resuelvan de forma rápida y eficiente las ecuaciones y sistemas de ecuaciones. El Análisis Numérico es la rama de las matemáticas que responde a estos requerimientos. En este trabajo trataremos algunos aspectos de interés de esta área. En concreto, mostraremos una aproximación de la derivada que nos permita modificar un resultado para obtener métodos de orden p+2 a partir de otras de orden p, de modo que se mantengan las propiedades de convergencia y estudiaremos la mejora de la eficiencia de esta técnica, debido al menor número de evaluaciones funcionales, aplicada a métodos de diferente orden. Otro resultado se ha alcanzado generalizando el método de Sharma, y generando así familias de métodos de orden 4 óptimos y de orden 6; con el estudio del número de operaciones obtendremos los dos métodos más eficientes de la familia de los que estudiaremos su dinámica. Otra línea de investigación consiste en el estudio de las diversas estrategias para aproximar el cálculo de las jacobiana, así los operadores de diferencias divididas han contribuido a estos objetivos. Nosotros hemos desarrollado un operador de diferencias divididas que, a pesar de ser más sencillo que otros ya conocidos, conserva las propiedades de convergencia de los métodos con derivadas. Posteriormente hemos adaptado las familias de métodos de orden 4 y 6 para ecuaciones con raíces múltiples obteniendo también métodos libres de derivadas aplicando el operador en diferencias divididas anteriores. A continuación hemos considerado hemos realizado el estudio del comportamiento dinámico de ciertos métodos aplicados sobre el problema de los N cuerpos. Finalmente hemos obtenido ciertos resultados referentes a la convergencia semilocal. Los resultados teóricos se han contrastado con diversas experiencias numéricas. / The need to solve equations and systems of nonlinear equations arises naturally in discretizing the integro-differential equations that model the problems that are responsible for the different branches of science and engineering. Currently, computers can be used as tools to facilitate all tasks related to their resolution. With the improvement of the devices, the development of computing techniques and variable accuracy arithmetic, the demand for iterative methods has been generalized to solve the equations and equation systems quickly and efficiently. Numerical Analysis is the branch of mathematics that meets these requirements. In this paper we will discuss some aspects of interest in this area. In particular, we will show an approximation of the derivative that allows us to modify a result to obtain methods of order p+2 from others of order p, so that the convergence properties are maintained and we will study the improvement of the efficiency of this technique, due to the smallest number of functional evaluations, applied to methods of different order. Another result has been achieved by generalizing the Sharma method, and thus constructing families of order 4 optimal and order methods 6; With the study of the number of operations, we will obtain the two most efficient methods of the family from which we will study its dynamics. Another line of research consists in the study of the various strategies to approximate the calculation of the Jacobins, thus the operators of divided differences have contributed to these objectives. We have developed a divided difference operator that, while being simpler than other ones already known, maintains the convergence properties of methods with derivatives. Later we have adapted families of order methods 4 and 6 for equations with multiple roots, also obtaining derivative free methods by applying the operator in previous divided differences. Below we have considered that we have done the study of the dynamic behavior of certain methods applied to the problem of the N-bodies. Finally we have obtained certain results referring to semilocal convergence. The theoretical results have been contrasted with several numerical experiences. / La necessitat de resoldre equacions i sistemes d'equacions no lineals sorgeix de manera natural en discretitzar les equacions integrodiferencials que modelen els problemes dels quals s'encarreguen les diferents branques de les ciències i l'enginyeria. Actualment, es pot fer ús dels ordinadors com a eines per facilitar totes les tasques entorn a la seua resolució. Amb la millora dels dispositius, el desenvolupament de les tècniques de computació i l'aritmètica de precisió variable, s'ha generalitzat la demanda de mètodes iteratius que resolguen de forma ràpida i eficient les equacions i sistemes d'equacions. L'Anàlisi Numèrica és la branca de les matemàtiques que respon a aquestos requeriments. En aquest treball tractarem alguns aspectes d'interés d'aquesta àrea. En concret, mostrarem una aproximació de la derivada que ens permeta modificar un resultat per obtenir mètodes d'ordre p+2 a partir d'altres d'ordre p, de manera que es mantinguen les propietats de convergència i estudiarem la millora de l'eficiència d'aquesta tècnica, degut al menor nombre d'avaluacions funcionals, aplicada a mètodes de diferent ordre. Un altre resultat s'ha assolit generalitzant el mètode de Sharma, i construint així famílies de mètodes d'ordre 4 òptims i d'ordre 6; amb l'estudi del nombre d'operacions obtindrem els dos mètodes més eficients de la família dels quals estudiarem la seua dinàmica. Una altra línia d'investigació consisteix en l'estudi de les diverses estratègies per aproximar el càlcul de les jacobianes, així els operadors de diferències dividides han contribuït a aquests objectius. Nosaltres hem desenvolupat un operador de diferències dividides que, tot i ser més senzill que d'altres ja coneguts, manté les propietats de convergència dels mètodes amb derivades . Posteriorment hem adaptat les famílies de mètodes d'ordre 4 i 6 per a equacions amb arrels múltiples obtenint també mètodes lliures de derivades aplicant l'operador en diferències dividides anteriors. A continuació hem considerat hem realitzat l'estudi del comportament dinàmic de certs mètodes aplicats sobre el problema dels N cossos. Finalment hem obtingut certs resultats referents a la convergència semilocal. Els resultats teòrics s'han contrastat amb diverses experiències numèriques. / Teruel Ferragud, C. (2018). Desenvolupament de nous mètodes per a la resolució d'equacions i sistemes d'equacions no lineals i Aplicacions [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/107325
|
Page generated in 0.0379 seconds