• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 35
  • 12
  • 9
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Fenton-like Reaction of As(III) in a Simulated Subsurface Environment via Injection of Nanoiron Slurry Combined with the Electrokinetic Process

Chen, Tsu-Chi 25 August 2010 (has links)
Abstract The object of this study was to investigate the synthesis of a nanoscale zero-valent iron slurry (NZVIS) for use in Fenton-like reactions, and to evaluate its efficiency for As(III) oxidation to As(V) in spiked deionized water and simulated groundwater containing humic acid. Furthermore, this study used injection of the nanoiron slurry combined with electrokinetic processes to remediate As(III) in soil. NZVI was prepared by a chemical reduction process. The efficiency of using 3 wt% soluble starch (SS) to stabilize NZVI was also studied. It was found that the SS could keep the nanoparticles dispersed for over one day. The NZVI was characterized by XRD, FE-SEM, ESEM-EDS, and EDS-mapping, to observe its morphology and crystal structure. In this research the iron species observed took non-crystalline forms. In water batch tests, studies in deionized water were compared with those in simulated groundwater with humic acid, and dissolved oxygen content was adjusted. Injection of NZVIS oxidized As(III) to As(V) in all cases. In both deionized water and simulated groundwater, it was found that when the dissolved oxygen(DO) content was not increased, the NZVIS generated non-selective oxidant OH¡E, thus reducing the As(V) production rate. When dissolved oxygen content was increased, the DO oxidized organic matter present in the simulated groundwater, allowing the OH¡E to react further with As(III) and increasing the As(V) production rate. Finally, a test was performed in actual groundwater under optimal reaction conditions, without increasing the dissolved oxygen content, for comparison of As(V) yield. The concentration of As(V) was found to be higher in this test (As(V) Conc. = 17.55 £gg/L) than when using simulated groundwater (As(V) Conc. = 4.63 £gg/L). This study further examined NZVIS injection combined with electrokinetic (EK) technology for the remediation of soil columns containing a low concentration (initial conc. = 100 mg/kg) and a high concentration (initial conc. = 500 mg/kg) of As(III). EK alone without injection of NZVIS (Test E-1) resulted in a residual soil As(V) concentration of 24 mg/kg in the low-concentration test group. In Test E-2, where NZVIS was injected into the anode reservoir, and Test E-3, where NZVIS was injected into the cathode reservoir, residual soil As(V) concentrations were 2.3 mg/kg and 3.4 mg/kg, respectively. The high-concentration test group was comprised of Test E-4 (EK alone without injection of NZVIS), Test E-5 (NZVIS injected into anode reservoir), and Test E-6 (NZVIS injected into cathode reservoir). In these tests, only soil sections 0.2 and 0.4 (normalized distance from anode reservoir) met soil regulation standards. Residual As(V) concentrations in soil sections 0.6, 0.8, and 1.0 are much higher than the regulatory standard. In soil section 1.0, the residual As(V) concentration was less in Test E-6 than in Test E-5 (116.6 mg/kg and 183.5 mg/kg, respectively). This may be because at high pH values, the iron surface does not corrode, instead arsenic adsorption prevails. Only a fraction of negatively charged As(V) species will migrate towards the anode resulting in a relatively low soil As(V) concentration near the cathode.
22

Adsorption of As(V), As(III) and methyl arsenic by calcite and the impact of some groundwater species

Jones, Robert Garret 15 May 2009 (has links)
The objective of this research was to investigate the retention of arsenate (iAsV), arsenite (iAsIII), monomethyl arsenate (MMAsV) and dimethyl arsenate (DMAsV) by calcite and assess the impact of dissolved Ca2+, Mg2+, phosphate and sulfate on arsenic solubility, adsorption and precipitation phenomena. Adsorption kinetics of iAsV, evaluated at a low and high concentration, was a relatively rapid process, with a fast initial reaction rate within the first few minutes and a subsequent slower reaction rate as equilibrium was approached. The relative adsorption of arsenicals decreased in the following order: iAsV > iAsIII > DMAV > MMAV. In no case was a clear adsorption maximum observed with increasing dissolved arsenic concentration. Dissolved 0.01 M Ca2+ resulted in an increase in iAsV adsorption; however, in the presence of 0.1 M Ca2+ adsorption of iAsV was decreased. The presence of Mg2+ as 0.01 M Mg(NO3)2 resulted in decreased iAsV adsorption probably the result of a lower iAsV affinity for adsorbed Mg2+ as compared to Ca2+. Phosphate and sulfate were highly competitive with iAsV in adsorption to calcite and both resulted in decreased iAsV adsorption. The total prevention of iAsV adsorption at initial equimolar arsenic/phosphate concentrations > 88 µM each could be from the consumption of available calcite surface sites by the specific adsorption of phosphate. Equilibrium modeling, using the geochemical and mineral speciation of equilibrium model (MINTEQA2), indicated that at low concentrations of arsenate or phosphate solid-phase precipitation was not likely and adsorption processes likely controlled solubility. At high concentrations of arsenate Ca3(AsO4)2 · 3 2/3 H2O and Ca3(AsO4)2 · 4 1/4 H2O solid phases could be controlling arsenate solubility. This study indicates that arsenic adsorption response by calcite was different than that of phosphate suggesting that arsenic may not be specifically adsorbed to calcium at the calcite surface. Reduction and biomethylation of arsenic decreased adsorption, suggesting that processes which could affect the speciation of arsenic in the environment, could increase arsenic mobility in environmental systems where calcite and dissolved aqueous calcium play a predominant role in controlling arsenic solubility. Dissolved aqueous concentrations of magnesium, phosphate and sulfate generally reduced the ability of arsenic to be adsorbed to calcite.
23

Study of the effect of Permeable Reactive Barriers (PRB) on the electrokinetic remediation of Arsenic contaminated soil

Chiang, Tzu-hsing 26 August 2005 (has links)
This research was aimed to investigate the enhancement of electrokinetic (EK) remediation arsenate-contaminated soil by permeable reaction barrier (PRB). All experiments, which experimental parameters included the position, materials, and quantity of PRB, processing fluid types, potential gradients, and treatment time, were conducted in two types of EK systems. One was Pyrex glass cylindrical cells with dimension of 4.2 cm (£r) ¡Ñ 12 cm (L) and the other was a small pilot-scale modulus with dimension of 36cm (L) ¡Ñ18cm (W) ¡Ñ18cm cm (H). The PRBs were composed of four kinds of reaction materials, which included commercial zero valent iron (Fe(0)C), manufactured zero valent iron (Fe(0)M), commercial hydrous ferric oxide (FeOOHC), and manufactured hydrous ferric oxide (FeOOHM), mixed with ottawa sand in a ratio of 1:2,respectively, and installed in the anode, middle, and cathode side of the EK systems. For 5-day EK cylindrical cell tests, the results showed that the PRB installation would result in a lower electroosmosis permeability (Ke) and a higher removal efficiency of arsenate. The arsenate removal efficiency of EK system with PRB was in the range of 43.89-70.25%, which was 1.5~2.6 times greater than that without PRB, and the value of Ke was in the range of 4.30-12.61¡Ñ10-6 cm2/V-s. The soil pH after EK/PRB treatment was much closer to natural and more arsenate was collected in the anode reservoir. Moreover, the remediation performance of FeOOHC as PRB materials was much better than other materials. For EK pilot-scale modulus tests, it was shown that the removal efficiency of arsenate was effectively enhanced as improved experimental parameters and, however, led to increase the treatment cost. In EK modulus without PRB, the removal efficiency of arsenate, elctroosmosis permeability, and energy consumption were 27.76%, 3.30-5.39¡Ñ10-6 cm2/V-s, and 1724.81 kWh/m3, respectively. Furthermore, the treatment cost was NT 9583/m3. As increasing treatment time, graphite electrode, potential gradient, and quantity of PRB materials, the removal efficiency of arsenate increased to as high as 45.11-71.22% and the treatment cost also increased up to NT 24,800-57,730/m3. As investigated the binding form of arsenate with soil after EK/PRB treatment, it was found that the arsenate ¡Vsoil binding forms of Fe-Mn oxide bound, organically bound, and residual in the soil section behind the PRB were much easier transformed to the forms of exchangeable and carbonate bound. The transformation rate reached as high as 72.5% and it increased with treatment time. However, the Fe-Mn oxide bound was still the main binding form, 61.6-81.6%, in the soil section prior to the PRB. The removal mechanism of arsenate contaminated soil remediation was dominated by electromigration, electrolysis, and electroosmosis in EK system without PRB. And, in EK/PRB system, the removal of arsenate from soil was mainly resulted from adsorption rather than redox reaction by PRB. To sum up, the PRB can effectively enhance the electrokinetic remediation of arsenate contaminated soil by choosing the right PRB materials and operation parameters.
24

Stabilization of Arsenic in Iron-Rich Residuals by Crystallization to a Stable Phase of Arsenic Mineral

Shan, Jilei January 2008 (has links)
Many water treatment technologies for arsenic removal that are used today produce arsenic-bearing solid residuals (ABSR), which are disposed in mixed solid waste landfills. It is now well established that many of these residuals will release arsenic into the environment to a much greater extent than predicted by standard regulatory leaching tests and, consequently, require stabilization to ensure benign behaviour after disposal. Conventional waste stabilization technologies, such as cement encapsulation and vitrification, are not suitable for ABSR applications due to their lack of effectiveness or high cost, thus creating a need for a more effective and low-cost treatment technology for ABSR. Arsenic Crystallization Technology (ACT) is a proposed arsenic stabilization method that involves in converting the ABSR into arsenic-bearing minerals that resemble natural materials and have high arsenic capacity, long term stability, and low solubility compared to untreated ABSR. Three arsenic minerals, scorodite, arsenate apatite and ferrous arsenate, have been investigated in this research for their potential application as ACT for ABSR stabilization. Among the three minerals, ferrous arsenate is demonstrated to be the most suitable arsenate mineral for safe arsenic disposal due to its low arsenic solubility and ease of synthesis. An innovative treatment procedure has been developed in this research for stabilization of ABSR to a stable phase of ferrous arsenate using zero-valent iron (ZVI) as the reducing agent. The procedure works at ambient temperature and pressure, and neutral pH. In addition, a modified four-step sequential extraction method has been developed as a means to determine the proportions of various arsenic phases in the stabilized as well as untreated ABSR matrices. This extraction method, as well as traditional leach and solubility tests, show that arsenic stability in the solid phase is dramatically increased after formation of crystalline ferrous arsenate.
25

ARSENITE OXIDATION BY PURE CULTURES OF <i>THIOMONAS ARSENIVORANS</i> STRAIN B6 IN BIOREACTOR SYSTEMS

Dastidar, Aniruddha 01 January 2010 (has links)
The removal of arsenic toxicity from water is accomplished by a preliminary preoxidative step transforming the most toxic form, arsenite (As (III)), to the least toxic form, arsenate (As (V)). The potential of As (III) oxidation to As (V) was initially investigated in batch reactors using the chemoautotrophic Thiomonas arsenivorans strain b6 under varying initial As (III) and cell concentrations and at optimal pH and temperature conditions (pH 6.0 and temperature 30°C). The strain b6 completely oxidized As (III) to As (V) during exponential growth phase for lower levels of As (III) concentrations (≤ 100 mg/L) but continued into stationary phase of growth for higher levels (≥ 500 mg/L). Other important factors such as oxygen and carbon limitations during biological As (III) oxidation were also evaluated. The biokinetic parameters of the strain b6 were estimated using a Haldanesubstrate inhibition model with the aid of a non-linear estimation technique. Microbial As (III) oxidation was further investigated in continuous-flow bioreactors (CSTR and biofilm reactor) under varying As (III) loading rates. Both the reactors achieved As (III) oxidation efficiency exceeding 99% during the steady-state conditions. The reactors were also able to recover from an As (III) overloading phase establishing the resilient nature of the microorganism. The basic mass balance expressions on As (III) and biomass along with the Monod model were used to linearly estimate the biokinetic parameters in the CSTR study. However, in the biofilm study, a steady-state flux model was used to estimate the same parameters. The performance of the model was very good in simulating the transient and steady-state conditions. Finally, the potential application of one-stage and two-stage reactor systems was investigated for the near complete removal of arsenic. Activated alumina was used as the adsorbent for the As (V) produced by the biological oxidation of As (III). The two-stage reactor process performed better than the one-stage reactor system in lowering the arsenic level below the detection limit (1 mg/L) for at least eight days of operation. However, pH fluctuations and probable competition from ions such as PO43- , SO42-, and Cl- severely impacted the performance of the reactors. Further study is needed to improve the overall efficiency of the reactor systems for achieving complete removal of arsenic for a longer operating time.
26

Die Oxidation heterogener Legierungen. Synthese und Kristallstrukturen von Phosphaten und Arsenaten des Thalliums mit Nickel und Eisen und Thallium-Bismut-Vanadaten

Panahandeh, Ahmad. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--Köln.
27

A Study of the Effect of Temperature Upon Reactions Between Stannous and Arsenate Ions in Silicic Acid Gels

Elder, Ellis 01 January 1932 (has links) (PDF)
Chapter I: Statement of the Problem The purpose of this investigation was to determine to what extent the reaction between stannous and arsenate ions in silicic acid gels is influenced by temperature. This was to be done by observing (1) the rate of crystal growth; and (2) the appearance of the crystal growth in sets of gels identical in composition but kept at different temperatures throughout the process of crystal growth.
28

Crystallography of arsenates and vanadates of cobalt and magnesium

Krishnamachari, Narasimhan 05 1900 (has links)
The crystal structures of Co₃(AsO₄)₂, Co₂₄ٜ₂As₉O₄₈, Co₂As₂O₇ and Co₇As₃ٜ₆O₁₆ have been determined by x-ray diffraction methods. The crystal structure of Mg₃(VO₄)₂ have been refined using single crystal x-ray diffraction data. General structural relations between M₃(XO₄)₂ type compounds where M refers to a divalent cation with radius comparable to that of cobalt, and x = As or V, are discussed. The deviations from ideality in cation polyhedral groups in crystal structures are analysed. / Thesis / Doctor of Philosophy (PhD)
29

ASSESSING THE HUMAN HEALTH RISKS AND ENVIRONMENTAL IMPACTS OF CCA-CONTAMINATED MULCH

HIGH, CRYSTAL MICHELLE SMITH 03 April 2006 (has links)
No description available.
30

Spectroscopic and kinetic studies of mononuclear molybdenum enzymes of the DMSO reductase family

Cobb, Nathan Jeremy 19 April 2005 (has links)
No description available.

Page generated in 0.0544 seconds