• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 25
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Crystal growth and nucleation kinetics of diethylenetriammonium hexachlororhodate (III) salt

Engelbrecht,Edmund 20 October 2022 (has links) (PDF)
At Anglo American Platinum's Precious Metal Refinery, rhodium separates from a base metal-rich solution by precipitation. Hexachlororhodate (III) ions and cationic protonated diethylenetriamine ions exchange to form diethylenetriammonium hexachlororhodate (III) crystals, a rhodium metal precursor. The objective of this work is to determine nucleation and growth kinetics of diethylenetriammonium hexachlororhodate (III) salt. Two reactor configurations, namely a transient continuous stirred tank reactor (CSTR) and a t-mixer plug flow reactor (PFR), were used to determine nucleation and growth rates. The objective of the configurations was to eliminate kinetic biases that may be caused by mixing at the mesoscale. Transient saturation in the CSTR ranged up to 43, and in the PFR saturation was varied between 2 and 64. Precipitation kinetic parameters were estimated through data fitting concentration and volume average crystal size profiles to a mass and population balance model. Temperature dependence of kinetic parameters was found to be universal between reactor configurations. Both growth through interfacial attachment and agglomeration, as defined in this work, were exothermic processes with activation energies of -192.9kJ/mol and -656.1kJ/mol respectively. Nucleation was found to be an endothermic process with an activation energy of 50.9kJ/mol in accord with the observed heat of crystallisation. No evidence of heterogeneous primary nucleation in the form of crystals adhering to the side walls of the reactor or the agitator blades was observed. The experiments were not explicitly designed to distinguish between primary and secondary nucleation mechanisms, therefore excluding one over the other is not justified. However, considering the presence of nucleated crystals in each system combined with the good model fit using a nucleation rate expression typically associated with secondary nucleation, it is likely that the dominating nucleation mechanism is secondary in nature. In the PFR configuration, nucleation and growth occur at a faster rate compared to the CSTR under the experimental conditions in this work. This observation is inferred from the fitted temperature independent kinetic parameters and is linked to a much higher mixing intensity achieved in the PFR relative to the CSTR. Flow conditions, described by the Reynolds number, can limit conversion in the PFR configuration by a mixing limitation at the micro- or mesoscale. Micro- and mesoscale mixing were represented by a characteristic length scale that was empirically related to temperature for the microscale and fluid velocity for the mesoscale. Under conditions where the Reynolds number is below the point where conversion is independent of the Reynolds number, either micromixing or mesomixing can become a rate limitation. At a sufficiently high Reynolds number neither micromixing nor mesomixing limits conversion and the system equilibrium becomes the limitation. In the CSTR, the system equilibrium limited reaction conversion as the micro- and mesoscale mixing zones were sufficiently small relative to the reactor volume. Parameters related to mixing were found to differ between the configurations, which was caused by different flow patterns within each configuration. Scanning electron microscopy (SEM) photographs suggest that crystals in the PFR configuration collide both in the radial and axial direction, giving rise to a feathery flat and elongated agglomerated crystal cluster. In contrast, the crystals in the CSTR configuration collide in a chaotic but consistent pattern, giving rise to a desert rose-like agglomerated crystal cluster. The derived model used to describe agglomeration is based on the agglomeration principles proposed by Von Smoluchowski coupled with Fick's law of diffusion and gives a good representation of crystal size. The PFR growth rate supersaturation exponent was 1.13, suggesting a Burton-Cabrera-Frank type growth model, and is indicative of crystal growth from screw dislocations that is limited either through mass transfer to the crystal surface, or surface integration. Thus, in this instance, the rate of aqueous hexachlororhodate (III) conversion to crystal would be responsive to mixing conditions on the micro- or mesoscale, as was experimentally found in the PFR configuration. In comparison, the CSTR growth rate supersaturation exponent was 2.31 and is more in line with polynuclear growth that appears to be limited by interfacial attachment kinetics, as the system equilibrates in the bulk. Lastly, a key finding of this work is the ability to manipulate the crystal morphology by changing reactor configuration. By creating elongated flat crystal structures in the PFR configuration as opposed to a desert rose crystal structure in the CSTR, it may be possible to reduce impurities within the crystal by entraining less mother liquor.
2

Concepción, diseño, implementación y operación de un biorreactor continuo para caracterización de parámetros dinámicos de sistemas elicitor-promotor-efector en biología sintética

Galarce Castro, Diego Ignacio January 2017 (has links)
Ingeniero Civil Químico. Ingeniero Civil en Biotecnología / Cuando se habla de ciencia e ingeniería, los métodos y herramientas utilizados son bastante distintos entre ellos. Bajo esta diferencia aparece la biología sintética, disciplina que busca diseñar y modificar organismos vivos para producir nuevas funciones y/o mejorar las ya existentes. Para ello hace uso de herramientas básicas de la ingeniería, tales como los conceptos de modularidad, estandarización, abstracción, modelamiento y diseño. Para poder estandarizar las unidades básicas de esta disciplina, los biobricks, se pueden utilizar pruebas en matraces, pero no es usual hacerlo en biorreactores. La concepción, diseño implementación y operación de uno de estos equipos constituye el objetivo principal de este proyecto. Como parte de los resultados del mismo, se estimó que el mejor modo de operar para lograr estas mediciones se compone de una cascada de CSTRs, la que fue implementada en escala de laboratorio. Para las pruebas de medición se construyeron cinco plásmidos, de los cuales cuatro fueron elaborados con técnicas usadas en biología sintética. De estos últimos, se obtuvo dos vectores con alta producción basal en LB, otro que no sintetizó la proteína esperada y sólo el último presentó un comportamiento apropiado, vale decir, producción basal baja y un aumento significativo en presencia de inductor. Para analizar el comportamiento del reactor en operación, se realizó una experiencia de distribución de tiempos de residencia. Los resultados indicaron que la diferencia entre el biorreactor, compuesto por 7 minirreactores CSTR en serie, y el modelo matemático, fue aproximadamente un 1%. En las pruebas de operación del biorreactor con bacterias, se obtuvo que la cepa con el promotor que responde a arabinosa posee un crecimiento más alto que la cepa con promotor sensible a aTc. En cambio, en términos de producción de proteína, el promotor sensible a aTc posee una inducción más fuerte. Específicamente, usando un flujo de 0,794 [mL/min], este promotor mostró una mayor productividad de proteína por biomasa, lo que lo caracteriza como un promotor fuerte.
3

Optimal steady-state design of bioreactors in series with Monod growth kinetics / Optimal design av bioreaktorer i serie vid steady-state med tillväxt som följer Monodkinetik

Hanna, Molin January 2018 (has links)
Bioreactors are used to carry out bioprocesses and are commonly used in e.g. biogas production and wastewater treatment. Two common hydraulic models of bioreactors are the continuous stirred tank reactor (CSTR) and the plug-flow reactor (PFR). In this paper, a differential equation system that describes the substrate, biomass and inert biomass in the bioreactors is presented. It is used in a steady-state analysis and design of CSTRs in series. Monod kinetics were used to describe the specific growth rate and the decay of biomass was included. Using the derived systems of differential equations, two optimization problems were formulated and solved for both CSTRs in series and for a CSTR+PFR. The first optimization problem was to minimize the effluent substrate level given a total volume, and the second was to minimize the total volume needed to obtain a certain substrate conversion. Results show that the system of differential equations presented can be used to find optimal volume distributions that solves the optimization problems. The optimal volume for N CSTRs in series decreases as N increases, converging towards a configuration of a CSTR followed by a PFR. Analyzing how the decay rate affects the results showed that when the total volume was kept constant, increasing the decay rate caused less difference between the configurations. When the total volume was minimized, increasing the decay rate caused the configurations to diverge from each other. The presented model can be used to optimally divide reactors into smaller zones and thereby increasing the substrate conversion, something that could be of interest in e.g. existing wastewater treatment plants with restricted space. A fairly accurate approximation to the optimal design of N CSTRs in series is to use the optimal volume for the CSTR in the configuration with a CSTR+PFR and equally distribute the remaining volumes. / Bioreaktorer används för att utföra olika biologiska processer och används vanligen inom biogasproduktion eller för rening av avloppsvatten. Två vanliga hydrauliska modeller som används vid modellering av bioreaktorer är helomblandad bioreaktor (på engelska continuous stirred tank reactor, CSTR) eller pluggflödesreaktor (på engelska plug-flow reactor, PFR). I den här rapporten presenteras ett system av differentialekvationer som används för att beskriva koncentrationerna av substrat, biomassa och inert biomassa i både CSTR och PFR. Ekvationssystemet används för analys och design av en serie CSTRs vid steady-state. Tillväxten av biomassa beskrivs av Monod-kinetik. Avdödning av biomassa är inkluderat i studien. Från ekvationssystemet formulerades två optimeringsproblem som löstes för N CSTRs i serie och för CSTR+PFR. Det första optimerinsproblemet var att minimera substrathalten i utflödet givet en total volym. I det andra minimerades den totala volymen som krävs för att nå en viss substrathalt i utflödet. Resultaten visade att ekvationssystemet kan användas för att hitta den optimala volymsfördelningen som löser optimeringsproblemen. Den optimala volymen för N CSTRs i serie minskade när antalet CSTRs ökade. När N ökade konvergerade resultaten mot de för en CSTR sammankopplad med en PFR. En analys av hur avdödningshastigheten påverkade resultaten visade att en ökad avdödningshastighet gav mindre skillnad mellan de två olika konfigurationerna när den totala volymen hölls konstant. När den totala volymen istället minimerades ledde en ökad avdödningshastighet till att de två konfigurationerna divergerade från varandra. Modellen som presenteras i studien kan användas för att fördela en total reaktorvolym i mindre zoner på ett optimalt sätt och på så vis öka substratomvandlingen, något som kan vara av intresse i exempelvis befintliga avloppsreningsverk där utrymmet är begränsat. En relativt bra approximation till den optimala designen av N CSTRs i serie är att optimera volymerna för en CSTR+PFR, använda volymen för CSTR som första volym i konfigurationen med N CSTR i serie, och sedan fördela den kvarvarande volymen lika mellan de övriga zonerna.
4

Continuous co-digestion of agro-industrial residues

Siripong, Chuthathip, Dulyakasem, Supusanee January 2012 (has links)
Slaughterhouse waste (SB) has high potential to be utilized in anaerobic digestion due to its high protein and lipid content. However, these are also the limiting factors of system stability. Thus, co-digestion of slaughterhouse waste with other agro-industrial residues (manure (M), various crops (VC) and municipal solid waste (MSW)) was introduced in this study to overcome this problem. The main objective of the work was to determine the operating parameters and the methane yield in semi-continuous co-digestion of slaughterhouse waste with other agro-industrial waste streams. Four continuously stirring tank reactors (CSTRs) with different substrates and mixtures (SB, SB:M, SB:VC and SB:VC:MSW) were started up operating with hydraulic retention time (HRT) of 25 days in thermophilic conditions. The highest organic loading rates which could be achieved were 0.9 g VS/L·d in digestion of SB and 1.5 g VS/L·d for the co-digestion mixtures. In these cases, average methane yields of 300, 510, 587 and 426 ml/g VS were obtained from the digestion of SB, and the co-digestion of SB:M, SB:VC and SB:VC: MSW, respectively, with methane contents in the biogas of 60-85%. The highest average methane yield of 587 ml/g VS was found in co-digestion of SB:VC, which was in accordance with the value of 592 ml/g VS detected during the batch digestion of the same mixture. Moreover, batch assays with different substrates as well as 11 different mixtures of those were also set up to investigate the methane potential and the effect of second feeding. The results showed that the co-digestion of SB:VC, SB:VC:MSW and SB:M could provide high methane potentials, where the highest methane yields of 592, 522 and 521 ml/g VS, respectively were obtained. Moreover, increasing, similar or decreasing methane yields were determined from the second feeding depending on the substrates and substrate mixtures used. / Program: MSc in Resource Recovery - Sustainable Engineering
5

High rate biogas production from waste textiles

Rajendran, Karthik, Balasubramanian, Gopinath January 2011 (has links)
Textile is a global product used by all people in the world. These textiles after the use are thrown into the trash for incineration or land filling. However an efficient way that can be used to produce more energy, in an environmentally friendly process is anaerobic digestion. Waste textiles which contain cellulosic fibers (e.g. Cotton and viscose) can be converted to biogas. In this study, the performance of a two-stage anaerobic digestion process for biogas production from four different materials, including untreated jeans, treated jeans, cotton, and starch was studied. Starch was used as an easy-to-digest material to compare its digestion with that of cellulosic materials.The two-stage processes were composed of a CSTR (for hydrolysis) and a UASB (for methanogenisis) which were investigated in two different configurations, namely (closed and open systems). In the closed system, the outlet of UASB was completely returned back to the CSTR, while in the open system the UASB outlet was sent to sewage. In a stepwise progress, the OLR was aimed to increase from 2 to 20 g Vs per L per day along with reduction in hydraulic retention time from 10 days to 1 day.The results showed that the closed system was more stable when compared to the open system. The pre-treatment of jeans by NMMO helped to produce methane as that of cotton. The hydraulic retention time was decreased to less than 9 days for treated jeans and less than 5 days for starch. The overall methane yield at OLR of 4 gVS per L per day for starch and treated jeans was 98.5% and 97.4% in the closed system, whereas in the open system the yield was 77.0% and 35.5%, respectively.Another experiment was conducted to compare the performance of two-stage process with that of a single stage process of anaerobic digestion of textiles containing polyester and cotton or viscose. Viscose textiles produced more gas compared to the cotton textile; it may be due to the higher crystalline of cotton which makes it hard to be degraded by the microorganisms. Furthermore, two-stage process could able to produce more methane than the single stage process.The parameters like total solids, volatile solids, pH, gas production, gas composition, concentration of nutrients, and COD were also analyzed for both of the experiments.
6

Παραγωγή υδρογόνου από καθαρές καλλιέργειες του ινολυτικού βακτηρίου Ruminococcus albus σε συνθετικά υποστρώματα και ενεργειακή βιομάζα γλυκού σόργου (Sorghum bicolor)

Ντάικου, Ιωάννα 11 March 2009 (has links)
Στόχος της παρούσας εργασίας ήταν η διερεύνηση της δυνατότητας παραγωγής υδρογόνου από καθαρές καλλιέργειες του μικροοργανισμού Ruminococcus albus εστιάζοντας κυρίως στο μηχανισμό της διεργασίας. Ο R. albus είναι ένα ετερότροφο, αυστηρά αναερόβιο βακτήριο που διαβιεί στο πρώτο διαμέρισμα του τετραμερούς στομάχου των μηρυκαστικών, τον κεκρύφαλο (rumen). Αναπτύσσεται καταναλώνοντας τους σύνθετους υδατάνθρακες που φτάνουν εκεί μέσω της πρόσληψης τροφής από το μηρυκαστικό, αφού πρώτα τους υδρολύσει μέσω εξωκυτταρικών ενζύμων που παράγει. Τα προϊόντα της υδρόλυσης είναι απλοί υδατάνθρακες που ζυμώνονται περαιτέρω προς παραγωγή λιπαρών οξέων, αιθανόλης, διοξειδίου του άνθρακα και υδρογόνου. Η ικανότητα παραγωγής υδρογόνου και η τελική απόδοση εξαρτώνται από τις συνθήκες υπό τις οποίες πραγματοποιείται η ανάπτυξη. Ο R. albus πιστεύεται ότι είναι πολλά υποσχόμενος για την παραγωγή υδρογόνου από αγροτικά υπολείμματα που είναι πλούσια σε λιγνοκυτταρινούχα υλικά καθώς και ενεργειακά φυτά , όπως είναι το γλυκό σόργο. Οι βλαστοί του γλυκού σόργου είναι πλούσιοι σε σάκχαρα, κυρίως σακχαρόζη σε ποσοστό έως και 55% επί ξηρής μάζας και γλυκόζη (3.2% επί ξηρής μάζας) που απομακρύνονται εύκολα μέσω της διεργασίας εκχύλισης με νερό. Οι βλαστοί του γλυκού σόργου περιέχουν επίσης μεγάλο ποσοστό κυτταρίνης (12.4%) και ημικυτταρίνης (10.2%). Προκειμένου να μελετηθεί ο μεταβολισμός του βακτηρίου και να υπολογιστούν οι κινητικές σταθερές πραγματοποιήθηκαν πειράματα σε αντιδραστήρες διαλείποντος έργου και αντιδραστήρες συνεχούς τροφοδοσίας (CSTR). Ως πηγές άνθρακα χρησιμοποιήθηκαν διάφορα απλά υδατανθρακικά υποστρώματα καθώς και βιομάζα από το ενεργειακό φυτό Sorghum bicolor (γλυκό σόργο). Τα κύρια προϊόντα που ανιχνεύτηκαν σε όλες τις περιπτώσεις ήταν τα οξέα οξικό και μυρμηκικό, η αιθανόλη και το υδρογόνο. Η απόδοση σε υδρογόνο ήταν γενικά μεγαλύτερη στα πειράματα διαλείποντος έργου. Ειδικότερα για τα πειράματα με γλυκόζη, η απόδοση κυμαινόταν μεταξύ των τιμών 2 και 2.6 mol H2/mol γλυκόζης στις καλλιέργειες διαλείποντος έργου, ενώ η βέλτιστη απόδοση από τις συνεχείς καλλιέργειες ήταν 1.07± 017 mol H2/mol γλυκόζης για υδραυλικό χρόνο παραμονής 42 h. Η τελική τιμή απόδοσης παρουσίαζε εξάρτηση από τη μερική πίεση υδρογόνου στην αέρια φάση των καλλιεργειών, το αναγωγικό μέσο για την εξασφάλιση αναγωγικών συνθηκών καθώς και την ποσότητα παραγόμενης αιθανόλης. Η κινητική μικροβιακής ανάπτυξης και παραγωγής υδρογόνου μελετήθηκε μέσω των πειραμάτων με γλυκόζη και η δεύτερη συνδέθηκε μέσω κινητικών εξισώσεων με την διάσπαση του μυρμηκικού οξέος και την παραγωγή αιθανόλης. Άλλα απλά υποστρώματα που μελετήθηκαν είναι οι πεντόζες D- και L-αραβινόζη και η D-ξυλόζη, οι δισακχαρίτες κελλοβιόζη και σακχαρόζη, για τα οποία υπολογίστηκαν οι κινητικές ανάπτυξης του μικροοργανισμού και βέβαια η βιομάζα σόργου, το εκχύλισμα σόργου και τα υπολείμματα σόργου μετά την εκχύλισή του. Οι αποδόσεις σε υδρογόνο ήταν πολλά υποσχόμενες σε όλες τις περιπτώσεις. / The aim of the present work was to investigate the process of hydrogen production using pure cultures of fibrolytic bacterium Ruminococcus albus, focusing mainly on the mechanism of the activity. R. albus is an important fibrolytic bacterium of the rumen, where it cohabits with other bacteria and protozoa. R. albus can ferment soluble sugars and also complex carbohydrates, such as cellulose and hemillulose, after breaking them down through the extracellular enzymes it produces. Regardless the initial substrate used a significant amount of hydrogen evolves from the fermentation process. Previous research with pure cultures of R. albus and whole sorghum, sorghum extract and lignocellulosic residues as substrate, lead to very promising hydrogen yields. Moreover, it was shown that sorghum biomass can be used for hydrogen production with high and similar final yields, independent on whether the process takes place in one stage, i.e. when both simple and complex carbohydrates are fermented in the same fermentor, or in two stages i.e. when sorghum extract and extraction residues are fermented separately. Therefore, it is believed that R. albus is very promising for the production of hydrogen from agricultural residues rich in lignocellulosic materials and from energy crops, such as sweet sorghum which contains soluble sugars and complex carbohydrates in almost equal amounts. Sweet sorghum is an annual C4 plant of tropical origin, well-adapted to sub-tropical and temperate regions and highly biomass-productive. Sweet sorghum stalks are rich in sugars, mainly in sucrose that amounts up to 55% of dry matter and in glucose (3.2% of dry matter). They also contain cellulose (12.4%) and hemicelluloses (10.2%). Extraction of free sugars from the stalks is easily achieved by extraction with water at 30°C. After the extraction process a liquid fraction, rich in sucrose, and a solid fraction, containing the cellulose and hemicelluloses, are obtained. The liquid fraction could be directly fermented to hydrogen, whereas the solid fraction should first be hydrolyzed in order to fully exploit the potential of the sorghum biomass for biohydrogen production In order to study the metabolism of bacterium and estimate growth and hydrogen production kinetics, batch and continuous experiments were carried out with glucose as carbon source. Besides glucose pentoses and disaccharides were tested as well, and the growth kinetics on these substrates were estimated.. The main products that were detected in all the cases were acetate, formate, ethanol and hydrogen. Hydrogen yield was generally higher in batch experiments. More specifically glucose experiments showed yields varying between the values 2 and 2.6 mol H2/mol of glucose in batch cultures, while the optimum yield in continuous cultures was 1.07± 017 mol H2/mol of glucose when the hydraulic retention time was 42h. The final hydrogen yield seemed to depend on hydrogen partial pressure, the reducing agent used and the final amount of ethanol.. The production of hydrogen was studied with glucose experiments and was connected via kinetic equations with formate breaking down acid and ethanol production. The other simple substrates that were studied were the pentoses D - and L-arabinose and the D-xylose, the disaccharides cellobiose and sucrose, for which the growth constants were calculated. Subsequently whole sorghum biomass, sorghum extract and lignocellulosic sorghum residues were tested and the experimental results were simulated. The simulations were sufficient in all cases, and hydrogen yields were very promising.
7

ARSENITE OXIDATION BY PURE CULTURES OF <i>THIOMONAS ARSENIVORANS</i> STRAIN B6 IN BIOREACTOR SYSTEMS

Dastidar, Aniruddha 01 January 2010 (has links)
The removal of arsenic toxicity from water is accomplished by a preliminary preoxidative step transforming the most toxic form, arsenite (As (III)), to the least toxic form, arsenate (As (V)). The potential of As (III) oxidation to As (V) was initially investigated in batch reactors using the chemoautotrophic Thiomonas arsenivorans strain b6 under varying initial As (III) and cell concentrations and at optimal pH and temperature conditions (pH 6.0 and temperature 30°C). The strain b6 completely oxidized As (III) to As (V) during exponential growth phase for lower levels of As (III) concentrations (≤ 100 mg/L) but continued into stationary phase of growth for higher levels (≥ 500 mg/L). Other important factors such as oxygen and carbon limitations during biological As (III) oxidation were also evaluated. The biokinetic parameters of the strain b6 were estimated using a Haldanesubstrate inhibition model with the aid of a non-linear estimation technique. Microbial As (III) oxidation was further investigated in continuous-flow bioreactors (CSTR and biofilm reactor) under varying As (III) loading rates. Both the reactors achieved As (III) oxidation efficiency exceeding 99% during the steady-state conditions. The reactors were also able to recover from an As (III) overloading phase establishing the resilient nature of the microorganism. The basic mass balance expressions on As (III) and biomass along with the Monod model were used to linearly estimate the biokinetic parameters in the CSTR study. However, in the biofilm study, a steady-state flux model was used to estimate the same parameters. The performance of the model was very good in simulating the transient and steady-state conditions. Finally, the potential application of one-stage and two-stage reactor systems was investigated for the near complete removal of arsenic. Activated alumina was used as the adsorbent for the As (V) produced by the biological oxidation of As (III). The two-stage reactor process performed better than the one-stage reactor system in lowering the arsenic level below the detection limit (1 mg/L) for at least eight days of operation. However, pH fluctuations and probable competition from ions such as PO43- , SO42-, and Cl- severely impacted the performance of the reactors. Further study is needed to improve the overall efficiency of the reactor systems for achieving complete removal of arsenic for a longer operating time.
8

Model Predictive Control (mpc) Performance For Controlling Reaction Systems

Asar, Isik 01 June 2004 (has links) (PDF)
In this study, the performance of the Model Predictive Controller (MPC) algorithm is investigated in two different reaction systems. The first case is a saponification reaction system where ethyl acetate reacts with sodium hydroxide to produce sodium acetate and ethanol in a CSTR. In the reactor, temperature and sodium acetate concentration are controlled by manipulating the flow rates of ethyl acetate and cooling water. The model of the reactor is developed considering first principal models. The experiments are done to obtain steady state data from the reaction system and these are compared with the model outputs to find the unknown parameters of the model. Then, the developed model is used for designing SISO and MIMO-MPC considering Singular Value Decomposition (SVD) technique for coupling. The second case is the reaction system used for the production of boric acid by the reaction of colemanite and sulfuric acid in four CSTR&rsquo / s connected in series. In the reactor, the boric acid concentration in the fourth reactor is controlled by manipulating the sulfuric acid flow rate fed to the reactor. The transfer functions of the process and disturbance (colemanite flow rate) are obtained experimentally by giving step changes to the manipulated variable and to the disturbance. A model-based and constrained SISO-MPC is designed utilizing linear step response coefficients. The designed controllers are tested for performance in set point tracking, disturbance rejection and robustness issues for the two case studies. It is found that, they are satisfactory except in robustness issues for disturbance rejection in boric acid system.
9

Análise e avaliação entrópica de reações múltiplas consecutivas em reator CSTR.

SOARES, Arianne de Freitas Barros. 19 October 2018 (has links)
Submitted by Maria Medeiros (maria.dilva1@ufcg.edu.br) on 2018-10-19T12:15:24Z No. of bitstreams: 1 ARIANNE DE FREITAS BARROS SOARES - DISSERTAÇÃO (PPGEQ) 2017.pdf: 1645096 bytes, checksum: d2c070ce1e85b955e552b026e872343c (MD5) / Made available in DSpace on 2018-10-19T12:15:24Z (GMT). No. of bitstreams: 1 ARIANNE DE FREITAS BARROS SOARES - DISSERTAÇÃO (PPGEQ) 2017.pdf: 1645096 bytes, checksum: d2c070ce1e85b955e552b026e872343c (MD5) Previous issue date: 2017-01-27 / O presente trabalho estende a metodologia de análise e otimização de processos químicos via minimização da taxa de produção de entropia a um sistema considerado complexo e pouco explorado pela metodologia adotada. Com o intuito de determinar as condições ótimas operacionais do processo, um sistema de reações múltiplas, genéricas e consecutivas conduzidas em um reator de mistura perfeita foi analisado. Tendo em vista que o produto intermediário é o de interesse comercial, o desenvolvimento da metodologia foi baseado nos balanços de massa e energia associados ao balanço entrópico objetivando a minimização da taxa de produção de entropia da reação de interesse. Em conformidade com estudos antecedentes, o procedimento de otimização revelou que a obtenção de uma relação entre a temperatura de alimentação e a temperatura de operação é fundamental para que a condição de mínima produção de entropia seja alcançada. Se tratando da temperatura de reação, uma única condição operacional foi considerada ótima do ponto de vista da mínima produção de entropia, maximizando o rendimento do produto desejado; enquanto que a metodologia clássica de análise e otimização sugeriu diversos pontos operacionais, incluindo um que direciona o sistema para a maximização do produto indesejado em detrimento do produto de interesse. Por se tratar de reações consecutivas, um parâmetro construtivo do reator também foi analisado para alcançar a condição de mínima entropia. A otimização entrópica do tempo de residência revelou que quanto maior for seu valor menor será a taxa de produção de entropia. Uma análise econômica de modo simplificado foi aplicada ao sistema com o intuito de se configurar um critério de seleção de tal parâmetro. Os resultados obtidos revelaram uma nova condição operacional capaz de reduzir os custos energéticos do processo e melhorar o desempenho reacional do sistema. / The present study extends the methodology of analysis and optimization of chemical process by minimizing the entropy rate production to a system considered complex and still not explored by the adopted methodology. In order to determinate the optimal operational conditions of the process, a system of multiple generic and consecutive reactions conducted in a perfect mixing reactor was analyzed. Since the intermediate product is of commercial interest, the development of the methodology was based on the mass and energy balances associated with the entropic balance aiming to minimize the entropy rate production of the reaction of interest. In accordance with previous studies, the optimization procedure revealed that obtaining a relation between inlet and operating temperatures is essential to reach the minimum entropy production condition. If treating of reaction temperature, a single operational condition was considered optimal from the point of view of minimum entropy production, while the classical analysis methodology suggested several operating points. Because it is a consecutive reaction, a constructive parameter of the reactor was also analyzed to reach the minimum entropy condition. The entropic optimization of the residence time revealed that the higher its value the lower is the entropy rate production. A simplified economic analysis was applied in order to configure a selection criterion for such parameter. The results reveals a new operating condition capable of reducing the energy costs of the process and improving the reactive performance of the system.
10

COBET : abordagem termodinâmica para a otimização e o controle de processos

Paim, Ágata January 2013 (has links)
O aumento do custo e da demanda de energia, juntamente com a escassez de recursos não renováveis e o crescente apelo para a sustentabilidade dos processos, incentiva o desenvolvimento de equipamentos e sistemas mais eficientes mediante a otimização e o controle dos recursos energéticos disponíveis. A proposta deste trabalho consiste em estabelecer uma abordagem termodinâmica para o controle e a otimização de processos visando o aumento da eficiência na operação dos mesmos. Para tanto, foi desenvolvido um problema de controle ótimo formulado com base no critério de eficiência termodinâmica de acordo com a 2ª Lei, com o objetivo de otimizar a transição entre estados com respeito a taxa de geração de entropia do sistema, mantendo as variáveis controladas como restrições de desigualdade dependentes do tempo. A estratégia proposta, chamada COBET (controle baseado na eficiência termodinâmica), foi aplicada a uma coluna de destilação binária para controlar a pureza do destilado e do produto de fundo, manipulando a razão de refluxo e a taxa de transferência de calor do refervedor. O COBET apresentou ajuste simples, tempo computacional razoável e desempenho de controle aceitável, quando comparado com controladores convencionais. Foi proposta uma estratégia alternativa, de modo a aprimorar o COBET, chamada R-COBET, que consiste no uso de restrições adicionais que garantem que as variáveis de controle permaneçam entre o estado inicial e final. O R-COBET obteve um desempenho aceitável, menor integral do erro quadrático das variáveis de controle e maior lucro, quando comparado ao COBET. A fim de demonstrar a aplicabilidade da metodologia proposta a outras funções objetivo, uma função empírica de eficiência baseada na 1ª Lei da Termodinâmica foi determinada e utilizada no problema de controle ótimo, sujeito às mesmas restrições consideradas no controlador R-COBET. Também se aplicou a metodologia proposta a um reator CSTR com o intuito de controlar a temperatura e a concentração do produto, considerando-se o controlador na forma R-COBET, e obteve-se um desempenho similar ao do estudo da coluna de destilação. Com estas análises, concluiu-se que a metodologia proposta pode ser aplicada com sucesso a problemas de controle ótimo com estados final e inicial definidos. / The increasing demand of energy and its rising costs, in addition to the non-renewable resources depletion and to the growing interest in the sustainability in industrial processes, stimulate the development of equipment and systems that are more efficient through the control and optimization of available energy resources. The purpose of this work is to establish a thermodynamic approach to process control and optimization, in order to improve operational efficiency. To this end, it is developed in this work an optimal control problem formulated on the basis of a thermodynamic efficiency criterion, as dictated by the 2nd Law. The principle is to optimize the transition between states with respect to thermodynamic efficiency – regarded as the square of entropy generation rate – while maintaining the controlled variables as time dependent inequality constraints. The proposed strategy, called here TEBC (Thermodynamic Efficiency Based Control) was applied to a binary distillation column in order to control distillate and bottom product purities within specifications while manipulating the reflux ratio and reboiler heat transfer rate. When compared to other controllers, TEBC presented practical tuning, reasonable computational time and acceptable control performance. An alternative strategy was also proposed in order to improve TEBC, called R-TEBC, which considers additional constraints to ensure that control variables remain between the initial and final states. The R-TEBC achieved acceptable performance, smaller integral squared error in the control variables and larger profit, when compared to TEBC. In order to demonstrate the applicability of the proposed methodology to other objective functions, an empirical efficiency function was proposed for the distillation column example and used in the optimal control problem, in the form of a R-TEBC controller. Moreover, an exothermic CSTR reactor with product concentration and reactor temperature as controlled variables was also studied, using additional constraints (R-TEBC), and the results was similar to those obtained in the distillation column. With this analysis, it was concluded that the proposed methodology can be applied to optimal control problems of this kind with fixed initial and final states.

Page generated in 0.0298 seconds