• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 525
  • 88
  • 81
  • 71
  • 24
  • 14
  • 10
  • 9
  • 9
  • 8
  • 5
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 1034
  • 159
  • 147
  • 103
  • 77
  • 73
  • 71
  • 70
  • 68
  • 66
  • 63
  • 61
  • 58
  • 58
  • 57
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Inorganic hydrogeochemistry, hydrogeology and geology of the Stuarts Point aquifer system : a process analysis of the natural occurrences of enriched As(III) and As(V) in an Australian coastal groundwater system

Smith, James V. S., School of Biological, Earth & Environmental Sciences, UNSW January 2005 (has links)
Arsenic (As) in groundwater systems is a problem in many parts of the world owing to ever-increasing extraction of groundwater resources to meet the needs of growing populations. Surprisingly, the occurrence of elevated As concentrations in coastal sandy aquifers has only recently been published as a result of this research. Sandy aquifers are commonly used as a clean and reliable source of water for domestic, agricultural and industrial needs due to their high recharge rates and the filtering capacity of sands. Water quality monitoring in Australian sandy aquifers is usually limited to a small suite of major elements and salinity measurements to determine the quality of groundwater and to identify any potential problems from seawater intrusion as a result of over extraction. Minor and trace elements, particularly toxic elements, have largely been ignored in regular monitoring programs. Prompted by an emerging pattern of human health problems in a community reliant on groundwater, hydrogeochemical investigations of the Stuarts Point coastal sand aquifer, on the North Coast of New South Wales, Australia, identified elevated As concentrations of up to 337 ????g/L in the catchment's Pleistocene barrier sands. These concentrations are well in excess of the World Health Organisation and the Australian National Health and Medical Research Council water quality criteria of 10 and 7 ????g/L respectively. From research into the Stuarts Point geology, geochemistry, geomorphology, hydrogeology and hydrogeochemistry, and with the assistance of environmental isotopes, the spatial distribution, occurrence and mobilisation processes of As were determined. The presence and distribution of elevated As concentrations in the regional coastal aquifer system are sporadic and involve a series of complex hydrogeochemical processes. No single hydrogeochemical process can describe the release of As from solid phase to groundwater system on the regional scale. Processes of competitive exchange with PO43- and HCO3-, reductive dissolution of Fe oxyhydroxides and arsenical pyrite oxidation, though not forming dominant correlations, are still evident and influence As chemistry at this scale. Detailed investigations of the hydrogeochemistry on the vertical scale have identified two main processes as causing As to be released and mobilised. The first process is associated with the oxidation of arsenical pyrite in Acid Sulphate Soils and metal hydrolysis reactions which mobilise As in the acidic environment. In the absence of dissolved oxygen (DO), NO3- acts as the oxyanion facilitating arsenical pyrite oxidation and releasing As into solution. The second process that mobilises As from the sediments is the liberation of As from metal-oxyhydroxides in the carbon-rich environment, where HCO3- originates from the dissolution of shell material in the Pleistocene barrier sands. The marine influenced depositional history and geomorphology of the aquifer provide opportunities for As to become incorporated into the aquifers matrix in a variety of mineral forms, which is an occurrence not considered to be unique to the Stuarts Point catchment. The findings presented here are amongst the first detailed studies of naturally occurring As in an Australian groundwater system as well as in the Pleistocene coastal sand aquifer environment. The understanding of As accumulation and mobilisation identified as a result of this research emphasises the need for potential As occurrences in similar groundwater systems in other coastal environments in Australia, and globally, to be considered.
362

Chemistry of arsenic in soils of north-east New South Wales / by Euan Smith.

Smith, Euan January 1998 (has links)
Bibliography: leaves 137-151. / xiii, 151 leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Ten soils from northern New South Wales, Australia, were sampled and assessed for their capacity to sorb arsenate (Asv) in relation to soil properties. / Thesis (Ph.D.)--University of Adelaide, Dept. of Soil Science, 1998
363

Effet de la végétation sur la mobilité de l'arsenic dans la rhizosphère.

Obeidy, Carole 13 May 2011 (has links) (PDF)
La pollution des sols par l'Arsenic (As) est une préoccupation environnementale grandissante dans plusieurs pays du monde : États-Unis, Canada, Mexique, Chine, Vietnam et France. L'émergence des techniques écologiques dites " phytoremédiation " constitue à l'heure actuelle une des solutions aux problématiques de décontamination des sols pollués par l'As. Aussi, elle permet de rallier le respect de l'état écologique des sites d'une part et le coût financier de traitement d'autre part. Pour cela, l'appréhension des interactions entre le végétal et l'As à l'interface racine-sol est nécessaire afin d'accélerer la mise en place de la phytoremédiation et de tester son efficacité. D'où l'objectif général de ce travail est d'étudier l'effet de quatres espèces végétales Holcus lanatus, Dittrichia viscosa, Lotus corniculatus et Plantago lanceolata sur la mobilité de l'As dans un sol à contamination géochimique en As (2000 mg kg-1). Notre étude a permis au départ de comparer et de caractériser la tolérance et la capacité accumulatrice des espèces séléctionnées à l'égard de l'As en milieu de culture et en sol contaminé chimiquement par l'As. Ensuite, l'étude de la mobilisation de l'As dans la rhizosphère a été réalisée par deux approches d'étude complémentaires : l'approche " rhizopot-rhizons " et l'approche " tapis racinaire ". L'approche " rhizopot-rhizons " nous a permis d'identifier d'intéressantes corrélations entre l'As et les paramètres suivis (NO3-, SO42- , Ca, Mg, P, pH, COD) tout au long de la période de croissance. Nous avons identifié et caractérisé plusieurs processus ifluençant la mobilisation de l'As dans la rhizosphère (alcalinisation/acidification, compétition anionique...). L'avantage de l'approche " rhizopot-rhizons " réside dans le fait que les plantes se sont développées sans prétraitement du substrat de croissance (contamination artificielle, ajout de solutions nutritives...). Par ailleurs, l'approche " tapis racinaire " a permis d'identifier quelques anions organiques dans les racines de P. lanceolata et de mettre en évidence le rôle du Phosphore dans la mobilisation de l'As dans la rhizosphère. Elle permet d'amplifier l'effet du système racinaire sur la mobilité de l'As dans le sol d'une part, et de récupérer entièrement le système racinaire tout en limitant les artefacts liés à la contamination des racines par le sol d'autre part.
364

Classical and quantum dynamics of atomic systems in the proximity of dielectric waveguides

Modoran, Andrei V., January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 197-200).
365

Determination of antimony in water, beverages, and fruits

Xia, Yunlong 06 1900 (has links)
Antimony is naturally occurring in the environment. The assessment of human exposure to environmental antimony is limited. This research focuses on the determination of antimony in water, beverages, and fruit. First, we explored whether there is a correlation between arsenic and antimony in water samples with a wide range of arsenic and antimony concentrations. The results showed absent correlation. Second, we determined antimony concentrations in bottled beverages including bottled water, soft drinks, juices and alcoholic drinks from Canada. The results showed that the antimony in most of these samples were below the Health Canada Guideline (6 g/L) for drinking water except one alcoholic drink which contains 7 g/L antimony. Further analysis of lemons and oranges using high performance liquid chromatography (HPLC) separation and inductively coupled plasma mass spectrometry (ICP-MS) detection demonstrated the presence of antimonycitrate species in these fruits, which has not been reported in literature.
366

The modeling of arsenic removal from contaminated water using coagulation and sorption

Kim, Jin-Wook 01 November 2005 (has links)
To achieve predictive capability for complex environmental systems with coagulation and arsenic sorption, a unified improved coagulation model coupled with arsenic sorption was developed. A unified coagulation model coupled with arsenic sorption was achieved by the following steps: (1) an improved discretized population balance equation (PBE) was developed to obtain the exact solution of conventional coagulation, (2) the improved PBE was extended to an adjustable geometric size interval having higher numerical stability, accuracy, and computational efficiency than existing models for fractal aggregate coagulation that includes agglomeration and fragmentation, (3) a surface complexation equilibrium model and a sorption kinetic model was introduced to predict arsenic sorption behavior onto hydrous metal oxide surfaces, and (4) an improved discretized PBE was coupled with arsenic sorption kinetics and equilibrium models by aid of collision efficiency ?? depending on surface charge (potential) on the hydrous metal oxide particles, colliding particle size ratio, and fluid strain-rate in applied flow system. The collision efficiency ?? into the improved (r,r)ij(r,r)ijdiscretized coagulation model for fractal aggregate yielded a unified improved coagulation model coupled with arsenic sorption kinetics and the equilibrium model. Thus, an improved unified coagulation model could provide high statistical accuracy, numerical stability, and computational efficiency to enhance predictive capability for behavior of arsenic sorption and fractal colloid particle aggregation and break-up, simultaneously. From the investigation, it is anticipated that the unified coagulation model coupled with arsenic sorption kinetics and equilibrium will provide a more complete understanding of the arsenic removal mechanism and its application to water/wastewater treatment. Further, this coupled model can be applied to other water and wastewater treatment systems combined with sorption and filtration processes. These combined processes can be optimized by the coupled model that was developed in this study. By simulating the arsenic sorption and particle size distribution as a pretreatment before filtration (sand filtration or membrane filtration), the overall arsenic removal efficiency and operation cost can be estimated.
367

Investigations into arsenate-induced neural tube defects in a mouse model

Hill, Denise Suzanne 15 May 2009 (has links)
Neural tube defects (NTDs) are malformations affecting about 2.6/1000 births worldwide, and 1/1000 in the United States. Their etiology remains unknown, and is likely due to interaction of genetic susceptibility factors with environmental exposure. Of the many environmental agents considered to potentially contribute to NTD risk, arsenic is one that is surrounded in controversy. We have developed a model system utilizing maternal intraperitoneal (I.P.) exposure on E7.5 and E8.5 to As 9.6 mg/kg (as sodium arsenate) in a normal inbred mouse strain, LM/Bc/Fnn, that is sensitive to arsenate-induced exencephaly. We investigated arsenate induced gene expression changes using DNA microarrays of embryonic anterior neural tube tissue, as well as monitoring of metabolic function in conjunction with the administration of select compounds to rescue the normal phenotype. Finally, to address questions concerning the importance of route of administration and potential maternal toxicity, a teratology study was performed using three arsenate doses administered orally. Regarding the gene expression study, we identified several candidate genes and ontology groups that may be responsible for arsenate’s teratogenicity. Genes include: engrailed 1 (En-1), platelet derived growth factor receptor alpha (Pdgfrα) and ephrinA7 (EphA7). Gene ontology groups identified include oxidative phosphorylation, redox response, and regulation of I-kappaB kinase/NF-kappaB cascade. Acute arsenate exposure induced disruption of mitochondrial function and dependent glucose homeostasis: subsequent hyperglycemia was teratogenic. Maternal treatment with insulin or n-acetyl cysteine, an antioxidant and precursor of glutathione synthesis, proved highly successful in rescuing both the normal phenotype, and to differing degree, the maternal hyperglycemia. Maternal oral arsenate administration also resulted in exencephaly, with exposed embryos exhibiting a positive linear trend with arsenate dosage. There were also linear trends in the relationships between arsenate dose and anomalies involving several components of the axial skeleton: the vertebrae and calvarium. There was no evidence of maternal toxicity as shown by lack of differences in maternal body weight gain, liver, and kidney weights. In conclusion, maternal arsenate exposure (regardless of exposure route) was teratogenic in our model, primarily causing NTDs. Responsible mechanisms may involve disruption of redox and glucose homeostasis as well as expression of established NTD candidate genes.
368

Aspects physiologiques et biochimiques de la tolérance à l'arsenic chez les plantes supérieures dans un contexte de phytostabilisation d'une friche industrielle

Austruy, Annabelle 14 June 2012 (has links) (PDF)
Ce travail a pour objectif la mise en place d'un procédé de phytostabilisation sur un ancien site industriel, la Vieille Usine d'Auzon (43, France). La caractérisation pédochimique du site atelier a révélé une pollution polymétallique par l'As, Pb, Sb, Cd et Cu. L'As, de par sa concentration totale et sa biodisponibilité dans le sol, est considéré comme le polluant le plus présent et le plus toxique. L'étude floristique réalisée sur le site a relevé une flore métallicole dominée par des pseudométallophytes électives telles que Agrostis capillaris, Equisetum arvense, ou les Euphorbiacées. De manière générale, la majorité des espèces présentes sur la friche industrielle a accumulé de très faibles quantités de polluants (As, Pb) dans ces parties aériennes. Dans un deuxième temps, les travaux ont porté sur les effets induits par les ETM au niveau physiologique et biochimique chez des modèles végétaux, Agrostis capillaris, Solanum nigrum, Vicia faba et Cannabis sativa. Ces données ont mis en évidence la sensibilité de V. faba et la tolérance de S. nigrum à la pollution aux ETM, un maintien de l'activité physiologique mais un ralentissement de la croissance de C. sativa sur sol pollué et une tolérance adaptative d'A. capillaris à la pollution du sol. Par ailleurs, une culture en hydroponie de S. nigrum et V. faba en présence d'As inorganique, arsénite et arséniate, à différentes concentrations a permis de mettre en évidence deux effets de l'As. Celui-ci a provoqué une altération de la structure et du fonctionnement des PSII, plus sensibles à l'As(III), et, une inhibition de l'activité oxygénase et carboxylase de la Rubisco, cible privilégiée de l'As(V). Enfin, ces résultats ont été utilisés dans le cadre de l'expérimentation in situ pour la validation d'un procédé de phytostabilisation sur la friche industrielle d'Auzon. Les effets de la combinaison d'une association d'espèces prairiales et d'un amendement de grenaille de fer zérovalent ou/et de compost ont pu être caractérisés. L'ajout de grenaille de fer au sol complété par un apport de compost a accentué la réduction de la disponibilité de l'As et dans une moindre mesure de Sb. De plus, il a permis d'enrichir le sol en élément minéraux et organiques et a ainsi facilité l'implantation d'un couvert végétal constitué d'espèces végétales à phénotype d'exclusion. Cette expérience in-situ a donc permis de mettre en avant la faisabilité d'un procédé de phytostabilisation dans la dépollution et la revalorisation de sites industriels.
369

Biotransformation of selenium and arsenic in insects : environmental implications

Andrahennadi, Ruwandi 09 July 2009
Living organisms constantly respond to changing environmental conditions, and some changes can be far from optimal for many organisms. Insects represent the majority of species in many ecosystems and play an important role in bioaccumulation and biotransformation of environmental contaminants such as selenium and arsenic. Some insectivorous predators feeding on these insects are highly sensitive to such elements resulting in reduced growth, reproductive failures and low population numbers. The mechanisms of selenium and arsenic uptake through the food chain are poorly understood. The determination of chemical speciation is a prerequisite for a mechanistic understanding of a contaminants bioavailability and toxicity to an organism. Synchrotron-based X-ray absorption spectroscopy was used to identify the chemical form of selenium and arsenic in insects in both the field and laboratory conditions. Insects living in streams near Hinton, Alberta affected by coal mine activities were examined for selenium speciation. Results showed higher percentages of inorganic selenium in primary consumers, detritivores and filter feeders than in predatory insects. Selenides and diselenides constitute a major fraction of selenium in these insects. In another field setting, speciation of selenium was studied in insects attacking selenium hyperaccumulating plant <i>Astragalus bisulcatus</i>. The effect of selenate and arsenate alone and the combined effects of selenate and arsenate on insects and parasitoids were monitored using a laboratory-reared moth (<i>Mamestra configurata</i>). Hosts receiving selenium biotransformed selenate to organic selenides and diselenides, which were transferred to the parasitoids in the third trophic level. Arsenic fed larvae biotransformed dietary arsenate to yield predominantly trivalent arsenic coordinated with three aliphatic sulfurs. Larvae receiving arsenate used a novel six-coordinated arsenic form as an excretory molecule in fecal matter and cast skin. X-ray absorption spectroscopy imaging with micro X-ray fluorescence imaging on selenate and arsenate fed larvae revealed highly localized selenium and arsenic species, zinc and copper within the gut. The results provide insights into how the insects cope with their toxic cargo, including how selenium and arsenic are biotransformed into other chemical forms and how they can be eliminated from the insects. The implication of selenium and arsenic species in the diet of predators and detritivores is discussed.
370

Uptake and sedimentation of arsenic, nickel, and uranium from uranium mine-impacted water by chlamydomonas noctigama

Quiring, Erika Eliese 22 September 2008
The primary aim of the research summarized in this thesis was to confirm or refute that algae are involved in metal sedimentation from surface water, and whether this activity, if any, is enhanced by increased phosphorus availability. <p>A small-scale laboratory-based experiment was devised to elucidate the role of the chlorophyte alga Chlamydomonas noctigama in the removal of arsenic, nickel and uranium from mine water. Results indicated that the presence of <i>C. noctigama</i> significantly enhanced the removal of these metals relative to treatments without cells. Metals were present in greater concentrations in particulate matter in treatments with cells compared to treatments without cells, and there was a corresponding decrease in the concentrations of dissolved metals. This leads to the conclusion that sedimentation was mainly biotically induced. <p>Additional evidence of biotic involvement in metal removal from water by <i>C. noctigama</i> was obtained by using EDX spectroscopy and X-PEEM spectromicroscopy to observe complexation of arsenic, nickel and uranium to C. noctigama cells. Arsenic, the metal which was present at the lowest concentration in the DJX water, was present on scanned cells in low concentrations, and nickel and uranium, which were present at high concentrations in the DJX water, were present at higher concentrations. Examination of a single cell using X-PEEM spectromicroscopy showed uranium co-localized with carbon and phosphorus on the exterior of the cell. Crystalline particulate matter may have increased in the presence of cells. EDX spectroscopy showed that the crystalline particulate matter was possibly hydroxyapatite that contained various metals, including arsenic, nickel and uranium. EDX spectroscopy was used to determine the frequencies at which the cell-metal and particulate matter-metal associations occurred, and the relative concentrations of the metals associated with particulate matter. <p>No correlation between metal removal and phosphorus concentration in the media, or between algal density and phosphorus concentration was observed. However, phosphorus concentrations were not growth-limiting in these experiments, and so the effect of phosphorus on abiotic precipitation of metals remains unclear. <p> Results suggest two mechanisms by which <i>C. noctigama</i> may remove arsenic, nickel and uranium from solution: by direct sorption to the exterior of the cell, and by sorption to a cell product. <p>An experiment using cells preserved in Lugols iodine (a common phytoplankton sample preservative) indiated that Lugols preserved samples could not be used to quantify metals using spectroscopy. Consequently, historical samples preserved with Lugols iodine cannot be analyzed by this method.

Page generated in 0.0412 seconds