• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 525
  • 88
  • 81
  • 71
  • 24
  • 14
  • 10
  • 9
  • 9
  • 8
  • 5
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 1034
  • 159
  • 147
  • 103
  • 77
  • 73
  • 71
  • 70
  • 68
  • 66
  • 63
  • 61
  • 58
  • 58
  • 57
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Long-Term Stabilization of Arsenic-Bearing Solid Residuals under Landfill Conditions

Raghav, Madhumitha January 2013 (has links)
The maximum contaminant level (MCL) for arsenic in drinking water was reduced to 10 parts per billion in 2006 by the USEPA. As a result, approximately 10,000 tons of arsenic-bearing residuals (ABSRs) are estimated to be generated every year from water treatment processes. It has also been established that the standard Toxicity Characteristic Leaching Procedure (TCLP), underestimates arsenic leaching from ABSRs, particularly under mature, mixed solid waste landfill conditions. This makes it critical to investigate stabilization technologies that would ensure long-term stability of arsenic residuals after disposal. Arsenic is ubiquitously associated with iron oxides in natural environments as well as water treatment residuals. Hence, knowledge of iron oxide transformations under landfill conditions is critical to understanding the fate and mobility of the associated arsenic. In this work, the effect of high local Fe(II) concentrations on ferrihydrite transformation pathways was studied. Magnetite was the sole transformation product in the presence of high local Fe(II) concentrations. In the absence of high Fe(II) concentrations, goethite was the major transformation product along with minor quantities of magnetite. These results have implications for arsenic mobility from ABSRs since goethite and magnetite have different arsenic sorption capacities and mechanisms. Two technologies were investigated for the stabilization of ABSRs - Arsenic Crystallization Technology (ACT) and Microencapsulation. The strategy for ACT was to convert ABSRs into minerals with a high arsenic capacity and long-term stability under landfill conditions. Scorodite, arsenate hydroxyapatites, ferrous arsenate, arsenated schwertmannite, tooeleite and silica-amended tooeleite, were synthesized and evaluated for their potential to serve as arsenic sinks using TCLP and a simulated landfill leachate test. Ferrous arsenate type solids and arsenated schwertmannite showed most promise in terms of low arsenic leachability and favorable synthesis conditions. Microencapsulation involved coating arsenic-loaded ferrihydrite with a mineral having high stability under landfill conditions. Based on results from a previous study, vivianite was investigated as a potential encapsulant for ABSRs. A modified version of the TCLP was used to evaluate the effectiveness of microencapsulation. Although vivianite did not prove to be a promising encapsulant, our efforts offer useful insights for the development of a successful microencapsulation technology for arsenic stabilization.
392

Metals And Metalloids In Atmospheric Dust: Use Of Lead Isotopic Analysis For Source Apportionment

Felix Villar, Omar Ignacio January 2014 (has links)
Mining activities generate aerosol in a wide range of sizes. Smelting activities produce mainly fine particles (<1 μm). On the other hand, milling, crushing and refining processes, as well tailings management, are significant sources of coarse particles (>1 μm). The adverse effects of aerosols on human health depend mainly on two key characteristics: size and chemical composition. One of the main objectives of this research is to analyze the size distribution of contaminants in aerosol produced by mining operations. For this purpose, a Micro-Orifice Uniform Deposit Impactor (MOUDI) was utilized. Results from the MOUDI samples show higher concentrations of the toxic elements like lead and arsenic in the fine fraction (<1 μm). Fine particles are more likely to be deposited in the deeper zones of the respiratory system; therefore, they are more dangerous than coarse particles that can be filtered out in the upper respiratory system. Unfortunately, knowing the total concentration of contaminants does not give us enough information to identify the source of contamination. For this reason, lead isotopes have been introduced as fingerprints for source apportionment. Each source of lead has specific isotopic ratios; by knowing these ratios sources can be identified. During this research, lead isotopic ratios were analyzed at different sites and for different aerosol sizes. From these analyses it can be concluded that lead isotopes are a powerful tool to identify sources of lead. Mitigation strategies could be developed if the source of contamination is well defined. Environmental conditions as wind speed, wind direction, relative humidity and precipitation have an important role in the concentration of atmospheric dust. Dry environments with low relative humidity are ideal for the transport of aerosols. Results obtained from this research show the relationship between dust concentrations and meteorological parameters. Dust concentrations are highly correlated with relative humidity and wind speed. With all the data collected on site and the analysis of the meteorological parameters, models can be develop to predict the transport of particles as well as the concentration of contaminants at a specific point. These models were developed and are part of the results shown in this dissertation.
393

How to Lower the Levels of Arsenic in Well Water: What Choices do Arizona Consumers Have?

Artiola, Janick F, Wilkinson, Sarah T 03 1900 (has links)
10 pp. / Arsenic levels are often above drinking water standards in Arizona groundwater, at levels that may affect health. Private well owners are responsible for testing and treating they own water. This publication gives an overview of arsenic well water and discusses home water treatment options, including detailed descriptions of distillation, reverse osmosis, and iron filters to lower arsenic and other common water constituents in drinking water.
394

EPIGENETIC REMODELING DURING ARSENICAL-INDUCED MALIGNANT TRANSFORMATION

Jensen, Taylor Jacob January 2008 (has links)
Humans are exposed to arsenicals through many routes with the most common being drinking water. Exposure to arsenic has been associated with an increased incidence of skin, lung, liver, prostate, and bladder cancer. Although the relationship between arsenic exposure and carcinogenesis is well documented, the mechanisms by which arsenic participates in tumorigenesis are not fully elucidated. We evaluated the potential epigenetic component of arsenical action by assessing the histone acetylation and DNA methylation state of 13,000 human gene promoters in a cell line model of arsenical-mediated malignant transformation. We show changes in histone H3 acetylation and DNA methylation occur during arsenical-induced malignant transformation, each of which is linked to the expression state of the associated gene. These epigenetic changes occurred non-randomly and targeted common promoters whether the selection was performed with arsenite [As(III)] or with the As(III) metabolite monomethylarsonous acid [MMA(III)]. The epigenetic alterations of these promoters and associated malignant phenotypes were stable after the removal of the transforming arsenical. One of the affected regions was the promoter of WNT5A. This gene is transcriptionally activated during arsenical induced malignant transformation and its promoter region exhibited alterations in each of the four histone modifications examined which were linked to its transcriptional activation. Experimental reduction of WNT5A transcript levels resulted in abrogated anchorage independent growth, suggesting a participative role for the epigenetic remodeling of this promoter region in arsenical-induced malignant transformation. Taken together, these data suggest that arsenicals may participate in tumorigenesis by stably altering the DNA methylation and histone modifications associated with targeted genes, uncovering a likely set of participative genes and representing a mechanism to potentially explain the latency associated with arsenic-induced malignancy.
395

Changes in Arsenic Levels in the Precambrian Oceans in Relation to the Upcome of Free Oxygen

Arvestål, Emma January 2013 (has links)
Life on Earth could have existed already 3.8 Ga ago, and yet, more complex, multicellular life did not evolve until over three billion years later, about 700 Ma ago. Many have searched for the reason behind this apparent delay in evolution, and the dominating theories put the blame on the hostile Precambrian environment with low oxygen levels and sulphide-rich oceans. There are, however, doubts whether this would be the full explanation, and this thesis therefore focuses on a new hypothesis; the levels of the redox sensitive element arsenic increased in the oceans as a consequence of the change in weathering patterns that followed the upcome of free oxygen in the atmosphere at about 2.4 billion years ago. Given its toxicity, this could have had negative effects upon the life of the time. To test the hypothesis, 66 samples from drill cores coming from South Africa and Gabon with ages between 2.7 and 2.05 Ga were analysed for their elemental composition, and their arsenic content were compared with carbon isotope data from the same samples. These confirmed that a rise in arsenic concentration following the upcome of free oxygen in the atmosphere and the onset of oxidative weathering of continental sulphides. Arsenic, which is commonly found in sulphide minerals, was weathered together with the sulphide and delivered into the oceans, where it in the Palaeoproterozoic increased to over 600% compared to the older Archaean levels, at least locally. Iron had the strongest control over the arsenic levels in the anoxic (ferruginous and sulphidic) oceans, probably due to its ability to remove arsenic through adsorption. During oxygenated conditions, sulphur instead had the strongest influence upon arsenic, likely because of the lack of dissolved iron. The highest arsenic levels were found in samples recognised as coming from oxygenated conditions, although this might be due to the oxygenation state of arsenic affecting its solubility. Arsenic is toxic already at low doses, especially if the necessary arsenic detoxification systems had not yet evolved. However, the lack of correlation between arsenic and changes in δ13C indicated that the increase of arsenic did not affect the primary production between 2.7 and 2.05 Ga. Thus, whether arsenic could have affected the evolution of life during the Mesoproterozoic remains to be shown.
396

Dynamic Arsenic Cycling in Scorodite-Bearing Hardpan Cements, Montague Gold Mines, Nova Scotia

DeSisto, STEPHANIE 05 January 2009 (has links)
Hardpans, or cemented layers, form from precipitation and subsequent cementation of secondary minerals in mine tailings and can act as both physical and chemical barriers. During precipitation, metals in the tailings are sequestered, making hardpan a potentially viable method of natural attenuation. At Montague Gold Mines, Nova Scotia, tailings are partially cemented by the iron (Fe) arsenate mineral scorodite (FeAsO4•2H2O). Scorodite is known as a phase that can effectively limit aqueous arsenic (As) concentrations due to its relatively low solubility (<1 ppm, pH 5) and high As content (~30 wt.%). However, scorodite will not lower As concentrations from waters to below the Canadian drinking water guideline (0.010 ppm). To identify current field conditions influencing scorodite precipitation and dissolution and to better understand the mineralogical and chemical relationship between hardpan and tailings, coexisting waters and solids were sampled to provide information on tailings-water interactions. Hardpan cement compositions were found to include Fe arsenate and Fe oxyhydroxide in addition to scorodite. End-member pore water chemistry was identified based on pH and dissolved concentration extremes (e.g. pH 3.78, As(aq) 35.8 ppm) compared to most other samples (avg. pH 6.41, As(aq) 2.07 ppm). These end-member characteristics coincide with the most extensive and dispersed areas of hardpan. Nearly all hardpan is associated with historical arsenopyrite-bearing concentrate which provides a source of acidity and dissolved As+5 and Fe+3 for scorodite precipitation. A proposed model of progressive arsenopyrite oxidation suggests localized As cycling involving scorodite is occurring but is dependent on sulfide persistence. Therefore, permanent As sequestration is not expected. Remediation efforts would have to consider the possibility of scorodite dissolution after complete sulfide consumption or as a consequence of applying certain technologies, such as a cover. Conversely, if scorodite stability were maintained, the hardpan could be considered as a component in remediating the tailings at Montague. / Thesis (Master, Geological Sciences & Geological Engineering) -- Queen's University, 2008-12-22 09:36:08.157
397

Determination of antimony in water, beverages, and fruits

Xia, Yunlong Unknown Date
No description available.
398

Excitation functions and isomeric yield ratios of (p,xn) reactions induced in 75 As and 115 In by protons of energy 20-85 MeV.

Brodovitch, Jean-Claude. January 1973 (has links)
No description available.
399

DEEPER GROUNDWATER FLOW AND CHEMISTRY IN THE ARSENIC AFFECTED WESTERN BENGAL BASIN, WEST BENGAL, INDIA

Mukherjee, Abhijit 01 January 2006 (has links)
Natural attenuation of trichloroethene (TCE) and technetium (99Tc) was studied for five consecutive seasons (from January 2002 to January 2003) in Little Bayou Creek. The stream receives ground water discharge from an aquifer contaminated by past waste disposal activities at the Paducah Gaseous Diffusion Plant (PGDP), a uranium enrichment facility near Paducah, Kentucky. Results from stream gaging, contaminant monitoring, tracer tests (with bromide, nitrate, rhodamine WT and propane) and simulation modeling indicate the TCE is naturally attenuated by volatilization and dilution, with volatilization rates related to the ambient temperature and surface discharge rate. The only apparent mechanism of 99Tc attenuation is dilution. Travel times of non-gaseous tracers were found to be similar and have highest values in October and lowest in June. It was also estimated from modeling that the transport of the solutes in the stream was mostly one-dimensional with insignificant secondary storage.
400

Effect of Arsenic on the Denitrification Process in the Presence of Naturally-Produced Volatile Fatty Acids and Arsenic Removal by New Zealand Iron Sand (NZIS)

Panthi, Sudan Raj January 2009 (has links)
This thesis is comprised of two phases; the first phase concerns the effect of arsenic on the denitrification process in the presence of naturally-produced volatile fatty acids (VFAs); while the second phase evaluates the arsenic removal efficiency of New Zealand Iron Sand (NZIS) by adsorption. To accomplish the first phase of the study, VFAs were first produced naturally in an acid-phase anaerobic digester by using commercially-available soy flour. Secondly, a denitrifying biomass was cultivated in a sequencing batch reactor (SBR) using domestic wastewater as a feed solution. Finally, a series of biological denitrification batch tests were conducted in the presence of different concentrations of arsenic and nitrate. As mentioned, the VFAs were generated from an anaerobic digester using 40 g/L soy solution as a synthetic feed. The digester was operated at a solids retention time (SRT) and hydraulic retention time (HRT) of 10 days. The pH of the digester was measured to be 4.7 to 4.9 while the mean temperature was 31 ± 4 °C; however, both these parameters were not controlled. In the effluent of the digester, a mean VFA concentration of 5,997 ± 538 mg/L as acetic acid was achieved with acid speciation results of acetic (33 %), propionic (29 %), butyric (21 %), iso-valeric (5%) and n-valeric acid (12 %). The specific VFA production rate was estimated to be 0.028 mg VFA as acetic acid/mg VSS per day. The effluent sCOD was measured to be 14,800 mg/L (27.9 % of the total COD), as compared to 9,450 mg/L (16.8 % of total COD) in the influent of the digester. Thus, the COD solubilization increased by 11.1 % during digestion yielding a specific COD solubilization rate of 0.025 mg sCOD/mg VSS per day. The extent of the digestion process converting the substrate from particulate to soluble form was also evaluated via the specific TOC solubilization rate (0.008 mg TOC/mg VSS per day), and VSS reduction percentage (17.7 ± 1.8 %). A denitrifying biomass was developed successfully in an SBR fed with domestic sewage (100 % denitrification was achieved for the influent concentration of sCOD = 285 ± 45 mg/L and NH₄⁺-N = 32.5 ± 3.5 mg/L). A mean mixed liquor suspended solids (MLSS) of 3,007 ± 724 mg/L and a mean SRT of 20.7 ± 4.4 days were measured during the period of the research. The settleability of the SBR sludge was excellent evidenced by a low sludge volume index (SVI) measured to be between 50-120 mL/g (with a mean value of 87 ± 33 mL/g) resulting in a very low effluent solids concentration (in many cases less than 20 mg/L). Several preliminary tests were conducted to estimate the right dosage of VFAs (digester effluent), nitrates and arsenic to be added and to confirm the occurrence of denitrification in an appropriate time frame of 4-6 h. From these tests, an optimum C/N ratio was observed to be somewhere between 2 to 4, somewhat higher than all the theoretical C/N ratios required for a complete denitrification using the four major VFAs identified in the digester effluent. During the denitrification batch tests, it was also observed that some NO₃⁻- N was removed instantaneously by reacting with As (III) (As₂O₃); while an increase in alkalinity of around 5.60 mg as CaCO₃ produced per mg NO₃⁻- N reduction was also observed. This latter number was very close to the theoretical value of alkalinity production (i.e. 5.41 mg as CaCO₃ per mg NO₃⁻- N). The effect of arsenic on the denitrification process was evaluated by observing the specific denitrification rate in series of denitrification batch tests (with different concentrations of arsenic). Results from the denitrification batch tests showed that there was a clear effect for both As (III) and As (V) on denitrification. In particular, the specific denitrification rate fell from 0.37 to 0.01 g NO₃⁻- N /g VSS per day as the concentration of As (III) increased from 0 to 50 mg/L. In contrast, there was comparatively less effect for As (V); i.e. only a 37 % decrease in the specific denitrification rate (from 0.34 g NO₃⁻- N /g VSS per day to 0.23 g NO₃⁻- N /g VSS per day) when the initial arsenic concentration increased from 0 to a very high level of 2,000 mg/L. The effects of both the As (III) and As (V) forms of inorganic arsenic on the denitrification rate were further quantified by constructing exponential equation models. It was suspected that the effect of As (III) on denitrification was more substantial than the effect of As (V) because of the former’s toxicity to microbes. Finally, the fate of arsenic was tracked by examining bacterial uptake. During the normal denitrification batch tests (i.e. designed for evaluation of the effect of arsenic on denitrification), no significant arsenic removal was observed. However, additional batch tests with a comparatively low concentration of biomass revealed that the denitrifying biomass removed 1.35 µg As (III) /g dry biomass and 2.10 µg As (V) /g dry biomass. In the second phase of this research, a series of arsenic adsorption batch tests as well as a column test were performed to examine the arsenic (As (III) and As (V)) removal efficiency of NZIS from an arsenic-contaminated water. The kinetics and isotherms for adsorption were analysed in addition to studying the effect of pH during the batch tests. Breakthrough characteristics for both As (III) and As (V) were studied to appraise the effectiveness of NZIS treating an arsenic contaminated water. Batch tests were performed with different concentrations of arsenic as well as at different pH conditions. A maximum adsorption of As (III) of approximately 90 % occurred at a pH of 7.5, while the As (V) adsorption reached its maximum value of 97.6 % at a very low pH value of 3. Both Langmuir and Freundlich Models were tested and found to fit with R² values of more than 0.92 in all cases. From the Langmuir adsorption model, the maximum adsorption capacity of NZIS for As (III) was estimated to be 1,250 µg/g, significantly higher (about three times) than for As (V) of 500 µg/g. In column tests, arsenic-contaminated water with total As concentration of 400 µg/L (in either form of As) were treated and a pore volume (PV) of 700 and 300 yielded a total arsenic level less than the WHO guideline value of 10 µg/L for As (III) and As (V) respectively; while, the breakthrough occurred after a throughput of approximately 3,000 PV of As (III) and 2,700 PV of As (V) with an average flow rate of approximately 1.0 mL/min.

Page generated in 0.0288 seconds