• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanisms of sorption and transformation of pollutants in the presence of iron species / Mécanisme de sorption et de la transformation des polluants en présence de fer

Xu, Jing 26 May 2016 (has links)
Le fer est un métal abondant dans l'environnement. La présence d'espèces de fer dans l'environnement peut affecter un grand nombre de processus. Les contaminants peuvent être largement trouvés dans les systèmes environnementaux. Différentes espèces peuvent exister, y compris pour les polluants inorganiques et les polluants organiques. L'étude de la transformation et la mobilité de ces contaminants en présence d'espèces de fer aura sans doute des implications importantes sur l'environnement. Le mémoire de thèse est divisé en quatre chapitres. Dans le premier chapitre, nous présenterons une synthèse bibliographique sur la contamination actuelle de l'arsenic et plusieurs contaminants émergents, la présence d'espèces de fer (fer dissous et oxydes de fer) dans l'environnement, et les interactions entre les contaminants et les espèces de fer. Le deuxième chapitre est une étude de l’adsorption de l’As(III) sur l'hydroxyde ferrique colloïdal et sa transformation sous lumière visible dans un système de fer(III)/ sulfite. Dans ce travail, l'oxydation de l’As(III) en As(V) dans un système de fer(III)/sulfite en utilisant la lumière du soleil ou d'une lampe à diode électroluminescente (λ = 404 nm) a été étudiée. Plusieurs types d’agents de piégeage des radicaux hydroxyles, d'azote et agents de complexation ont été utilisés pour l'étude du mécanisme d’oxydation. En comparant le a) le fer(III) avec l'irradiation et b) le fer(III)/sulfite sans irradiation, nos résultats montrent une amélioration significative de l’oxydation de l’As(III) à pH 6 dans un système de fer(III)/sulfite-visible correspondant à une constante de vitesse initiale de 0,196 min-1. L’étude du mécanisme a révélé que les voies de l'oxydation d’As(III) à pH neutre est assez complexe. En effet, les radicaux libres (principalement les HO•, SO4-• et SO5-•) et mécanismes de transfert ligand-métal charge entre As (III) et ferrique colloïdal hydroxyde (CFH) des particules sont impliqués. Le troisième chapitre est une étude de l'adsorption coopérative d'acide nalidixique (NA) et de l'acide niflumique (NFA) sur goethite. Dans ce travail, la cinétique d’adsorption de NA et NFA a été réalisée en single et binaire. Les résultats montrent que le qe de NA est 8 fois de NFA dans un système à seul composant. Dans le système binaire, qe de NA était légèrement plus grand que pour le système single, alors que l’adsorption de NFA était environ 4 fois plus grande que pour le système single, ce qui suggère que l'adsorption est coopérative ou une co-liaison a eu lieu entre NA et NFA. La désorption a confirmé qu'aucune transformation de NA ou NFA a eu lieu en présence de la goethite. Des expériences en infra-rouge (ATR-FTIR) et la modélisation de complexation multi-site (MUSIC) ont été également effectuées. L'adsorption de NA et NFA dans les deux systèmes de composants simples et binaires peut être décrit par MUSIC. Ensuite, le quatrième chapitre est une étude de l'adsorption de NA et NFA sur du sable recouvert de goethite (GCS) sous conditions hydrodynamiques contrôlées. L'étude cinétique et les isothermes d’adsorption ont confirmé l'effet de co-liaison de NA et NFA sur la surface de GCS. Le comportement de NA et de NFA dans la colonne a montré de différence significative en raison de la différence de capacité et des mécanismes d'adsorption. Dans le système binaire, le comportement d'une substance peut être affectée par la présence de l'autre substance, tandis que l'effet sur la NFA est beaucoup plus prononcée que celle de NA. La modélisation de la complexation de surface a été utilisée pour prédire les courbes de percée, mais un désaccord a été observée entre la modélisation et les données expérimentales. Le point de percée et la quantité d'adsorption sont surestimés par le modèle, ce qui pourrait du à des limitations cinétique d’origine chimique. / Iron is an abundant metal in the environment. The occurrence of iron species in the environment can affect a wide range of processes. Contaminants can be widely found in the aqueous and solid phase environment. Their species are complex and diverse, including inorganic pollutants and organic pollutants. The studying on the mobility and redox transformation of these contaminants in the presence of iron spices and thereby the treatment methods have important environmental implications. This thesis includes 4 chapters. In the first chapter, we presented the bibliography on the current contamination situation of arsenic and several emerging contaminants, occurrence of iron species (dissolved iron and iron oxides) in the environment, and the interactions between contaminations and iron species. The second chapter is a study of the sorption of As(III) on colloidal ferric hydroxide and the transformation of As(III) under the visible light induced iron(III)/sulfite system. In this work, the oxidation of As(III) to As(V) in an iron(III)/sulfite system under visible light using sunlight or a light-emitting diode lamp (λ = 404 nm) were investigated. Several kinds of free radical quenchers, nitrogen and complexation competing agent were used for mechanism study. Comparing to a) iron(III) system with irradiation of light and b) iron(III)/sulfite system without irradiation light, our results show a significant enhancement of As(III) oxidation efficiency at pH 6 in iron(III)/sulfite-visible light (LED) system, corresponding to an initial rate constant of 0.196 min−1. Mechanism investigation revealed that the pathways of As(III) oxidation at circumneutral pH is complicated that involved free radicals (mainly HO•, SO4−• and SO5−•) and ligand-to-metal charge transfer between As(III) and colloidal ferric hydroxide (CFH) particles. The third chapter is a study of cooperative adsorption of nalidixic acid (NA) and niflumic acid (NFA) on nano-size goethite. In this work, the adsorption of NA and NFA in single and binary component systems was conducted by kinetic adsorption experiments and batch experiments for macroscopic study. Results show that qe of NA is 8 times of NFA in the single component system. In the binary component system, qe of NA was slightly larger than for the single system, whereas NFA adsorption was about 4 times larger than for the single system, suggesting that cooperative adsorption or co-binding occurred between NA and NFA. Desorption experiment confirmed no transformation of NA and NFA occurred in the presence of goethite. Attenuated Total Reflectance-Fourier Transform InfraRed (ATR-FTIR) spectroscopy and multi-site complexation (MUSIC) modeling was used for the microscopy study. The adsorption of NA and NFA in both single and binary component systems can be described by MUSIC modeling well. Afterwards, the fourth chapter is a study of the cooperative adsorption of NA and NFA onto goethite coated sand (GCS) under batch and flow through conditions. Batch experiments, including kinetic study, pH edges and isotherms, confirmed the co-binding effect of NA and NFA on GCS surface. The breakthrough behavior of NA and NFA in the column study showed significant difference in single component system due to the difference in adsorption ability and mechanisms. In binary component system, the breakthrough behavior of one substance can be affected by the presence of the other substance, while the effect on NFA is much pronounced than NA. Surface complexation modeling was used to predict the breakthrough behavior, however a disagreement was observed between modeling and experimental data in breakthrough point and adsorption amount, which might due to the chemical sorption kinetic limitation.
2

Uranium sorption on clay minerals: Laboratory experiments and surface complexation modeling

Bachmaf, Samer 11 November 2010 (has links)
The objective of the work described in this thesis was to understand sorption reactions of uranium occurring at the water-clay mineral interfaces in the presence and absence of arsenic and other inorganic ligands. Uranium(VI) removal by clay minerals is influenced by a large number of factors including: type of clay mineral, pH, ionic strength, partial pressure of CO2, load of the sorbent, total amount of U present, and the presence of arsenate and other inorganic ligands such as sulfate, carbonate, and phosphate. Both sulfate and carbonate reduced uranium sorption onto IBECO bentonite due to the competition between SO42- or CO32- ions and the uranyl ion for sorption sites, or the formation of uranyl-sulfate or uranyl-carbonate complexes. Phosphate is a successful ligand to promote U(VI) removal from the aqueous solution through formation of ternary surface complexes with a surface site of bentonite. In terms of the type of clay mineral used, KGa-1b and KGa-2 kaolinites showed much greater uranium sorption than the other clay minerals (STx-1b, SWy-2, and IBECO montmorillonites) due to more aluminol sites available, which have higher affinity toward uranium than silanol sites. Sorption of uranium on montmorillonites showed a distinct dependency on sodium concentrations because of the effective competition between uranyl and sodium ions, whereas less significant differences in sorption were found for kaolinite. A multisite layer surface complexation model was able to account for U uptake on different clay minerals under a wide range of experimental conditions. The model involved eight surface reactions binding to aluminol and silanol edge sites of montmorillonite and to aluminol and titanol surface sites of kaolinite, respectively. The sorption constants were determined from the experimental data by using the parameter estimation code PEST together with PHREEQC. The PEST- PHREEQC approach indicated an extremely powerful tool compared to FITEQL. In column experiments, U(VI) was also significantly retarded due to adsorptive interaction with the porous media, requiring hundreds of pore volumes to achieve breakthrough. Concerning the U(VI) desorption, columns packed with STx-1b and SWy-2 exhibited irreversible sorption, whereas columns packed with KGa-1b and KGa-2 demonstrated slow, but complete desorption. Furthermore, most phenomena observed in batch experiments were recognized in the column experiments, too. The affinity of uranium to clay minerals was higher than that of arsenate. In systems containing uranium and arsenate, the period required to achieve the breakthrough in all columns was significantly longer when the solution was adjusted to pH 6, due to the formation of the uranyl-arsenate complex. In contrast, when pH was adjusted to 3, competitive sorption for U(VI) and As(V) accelerated the breakthrough for both elements. Finally, experiments without sorbing material conducted for higher concentrations of uranium and arsenic showed no loss of total arsenic and uranium in non-filtered samples. In contrast, significant loss was observed after filtration probably indicating the precipitation of a U/As 1:1 phase.
3

Understanding sorption mechanisms of uranium onto elemental iron, minerals and Shewanella putrefaciens surfaces in the presence of arsenic

N’zau Umba-di-Mbudi, Clement 11 December 2009 (has links)
The concomitant occurrence and reported discrepant behavior of uranium and arsenic in water bodies is a major health and environmental concern. This study combined batch and column experiments, hydrogeochemical simulations and XAFS spectroscopy to uncover the exchange mechanisms governing uranium fate between water and scrap metallic iron, minerals and Shewanella putrefaciens surfaces in the presence of arsenic. The main results suggest that both water chemistry and the solid phase composition influence uranium fate in the presence of arsenic. The importance of uranyl-arsenate species as a major control of uranium behavior in the presence of arsenic is shown. The toxicity of arsenic and the presence of nitrate are interpreted as limiting factors of the enzymatic reduction of both toxins. Besides, XANES fingerprinting and EXAFS modeling have confirmed precipitation/co-precipitation of uranyl-arsenates as a major mechanism controlling uranium behavior in the presence of arsenic.

Page generated in 0.0784 seconds