Spelling suggestions: "subject:"artemisia afro"" "subject:"artemisia afa""
11 |
Aspects of the gastrointestinal uptake and metabolism of luteolin derivatives from Artemisia afra aqueous extract (preclinical)Mukinda, James Tshikosa January 2011 (has links)
<p>The aim of this study was to investigate the effect the plant matrix and the structure of the flavonoid (i.e. whether aglycone or glycoside) may have on the gastrointestinal uptake and metabolism of luteolin derivatives from Artemisia afra traditional plant medicine. Specifically, how these two factors influenced the intestinal uptake and disposition of luteolin derivatives in pure and in Artemisia afra plant extract forms were to be assessed by investigating the uptake and metabolism of the luteolin derivatives in human intestinal epithelial Caco-2 cells and the perfused rat intestinal loop. To realize this aim, the following were determined: (1) identification and characterization of major luteolin derivatives found in Artemisia afra, (2) the effect of the plant matrix on the uptake of luteolin derivatives in Artemisia afra aqueous-extract forms across the Caco-2 cell monolayer, (3) the effect of the plant matrix on the absorption and metabolism of luteolin derivatives in Artemisia afra aqueous-extract forms in the perfused rat small intestine, (4) the effect of gut contents on the uptake and metabolism of luteolin derivatives in intestinal loop and (5) the metabolic profiles of luteolin derivatives obtained for the pure solutions versus plant aqueous extract solutions in Caco-2 cells and the rat intestine.</p>
|
12 |
Aspects of the gastrointestinal uptake and metabolism of luteolin derivatives from Artemisia afra aqueous extract (preclinical)Mukinda, James Tshikosa January 2011 (has links)
<p>The aim of this study was to investigate the effect the plant matrix and the structure of the flavonoid (i.e. whether aglycone or glycoside) may have on the gastrointestinal uptake and metabolism of luteolin derivatives from Artemisia afra traditional plant medicine. Specifically, how these two factors influenced the intestinal uptake and disposition of luteolin derivatives in pure and in Artemisia afra plant extract forms were to be assessed by investigating the uptake and metabolism of the luteolin derivatives in human intestinal epithelial Caco-2 cells and the perfused rat intestinal loop. To realize this aim, the following were determined: (1) identification and characterization of major luteolin derivatives found in Artemisia afra, (2) the effect of the plant matrix on the uptake of luteolin derivatives in Artemisia afra aqueous-extract forms across the Caco-2 cell monolayer, (3) the effect of the plant matrix on the absorption and metabolism of luteolin derivatives in Artemisia afra aqueous-extract forms in the perfused rat small intestine, (4) the effect of gut contents on the uptake and metabolism of luteolin derivatives in intestinal loop and (5) the metabolic profiles of luteolin derivatives obtained for the pure solutions versus plant aqueous extract solutions in Caco-2 cells and the rat intestine.</p>
|
13 |
The implementation of in vitro assays to screen environmental samples for male reproductive toxicityEbrahim, Mozaffar January 2010 (has links)
Magister Scientiae (Medical Bioscience) - MSc(MBS) / Endocrine disrupting compounds (EDCs) are exogenous compounds/chemicals which interfere with, or have adverse effects on the production, distribution and function of natural hormones, thereby affecting normal endocrine activity, health and quality of life of both humans and wildlife. The reproductive system is highly susceptible to EDCs due to it being controlled by an array of hormonal signals. The effects of EDCs on the male reproductive system include infertility, decreased sperm count, function and morphology, abnormal development of secondary sex characteristics, reproductive function and sexual behaviour as well as decreased libido. There are various sources by which EDCs enter the environment which include effluents from several industries (mining, agriculture, smelting, hazardous waste sites, manufacturing industries, etc.), sewage treatment effluents, urban and agricultural runoff and effluents which include natural and pharmaceutical chemicals excreted in the urine of humans and domestic livestock, pesticides, polychlorinated biphenyls, dioxins, plasticizers, surfactants, etc. Humans and animals can also be affected by EDCs by consuming food containing endocrine active substances. The growing concern regarding adverse effects due to EDC exposure of humans and wildlife, as well as the increased incidence of EDC contamination has prompted extensive research into the development and validation of screening tests to detect and monitor known EDCs and new substances with endocrine-disrupting capability. These screening tests involve assessing the effect of known and potential EDCs on reproductive function and development as well as hormone production. To assess the effect of EDCs on the reproductive system different methods are employed which include in vitro, in vivo and ex vivo methods. In vitro methods have been suggested as a suitable screening tool for EDC monitoring due to low costs, reduced animal usage, the use of standard and basic equipment as well as the ability to screen a large number of samples with multiple endpoints. Of the available in vitro methods, the minced testes method has been suggested as the most suitable method for screening EDCs and for this reason has been employed in this study. The aim of this study was thus to employ a minced testes method to screen samples for male reproductive toxicity using cell viability and hormone production (testosterone and estradiol) as endpoints.The first objective of this study was to optimize an in vitro testicular cell culture assay by determining both optimal luteinizing hormone (LH) concentration and incubation time needed for testosterone production. Testicular cell cultures were prepared and cells were treated with varying concentrations of LH (10, 1, 0.1, 0.01 and 0 mu/ml) and incubated for 4 hours and 20 hours. Testosterone production was evaluated for each incubation period. Testosterone production was significantly increased for both incubation periods at all LH concentrations tested as compared to the control. For both incubation periods, there was no significant difference in testosterone production between the different LH concentrations tested. From the data obtained, the 4 hour incubation period as well as the LH concentration of 10 mu/ml were selected as optimal for the testicular cell culture assay. The second objective of this study was to determine the effect of Tulbaghia violacea Harv. on the male reproductive system. T. violacea is a plant species indigenous to southern Africa and is used locally as a herbal remedy/medicine to treat several ailments. Cells were treated with varying concentrations of the T. violacea ethanol extract (with/without LH-treatment) and incubated for 4 hours. Hormone production and cell viability were evaluated. The results obtained from this pilot in vitro study demonstrated that the ethanol extract of T.violacea has androgenic properties by significantly increasing LH-induced testosterone production in mouse testes with no significant change in cell viability. The third objective of this study was to assess the effect of Sutherlandia frutescens(L.) R.Br and Artemisia afra Jacq. Ex Willd. on the male reproductive system. S. frutescens and A. afra are also plant species indigenous to southern Africa and used locally as a herbal remedy/medicine to treat several ailments. Ethanol extracts of each plant was prepared and cells were treated with varying concentrations of each extract (0, 156.25, 312.5, 625, 1250,2500 and 5000 μg/ml) with or without LH-treatment and incubated for 4 hours. Cytotoxicity by LDH measurement and hormone production (testosterone and estradiol) were endpoints that were evaluated. The results obtained showed that the ethanol extracts of both plants are not cytotoxic to testicular cells and that A. afra decreases testosterone production at high concentrations. The fourth and final objective of this study was to assess the acute effect of four heavy metals, namely manganese, copper, cadmium and magnesium on the male reproductive system. These heavy metals are used extensively in manufacturing and mining industries. Cells were treated with varying concentrations of each metal salt (200, 100, 50, 25, 12.5, and 6.25 & mu;M) with or without LH-treatment and incubated for 4 hours. Endpoints evaluated included cell viability, testosterone and estradiol production. The results obtained showed that manganese, cadmium and copper are highly toxic to testicular cells in vitro and therefore may potentially cause reproductive toxicity. / South Africa
|
14 |
The immune-modulating activity of Artemisia afraKriel, Yusra January 2010 (has links)
<p>This study shows that herbs can be effectively screened for potiential bio-activity using in vitro methods. Further studies will be needed to better explore Artemisia afra&rsquo / s effect on immunoregulation, particularly long term effects of the herb on the immune system and its effect on other disease states.</p>
|
15 |
The implementation of in vitro assays to screen environmental samples for male reproductive toxicityEbrahim, Mozaffar January 2010 (has links)
<p>Endocrine&ndash / disrupting compounds (EDCs) are exogenous compounds/chemicals which interfere with, or have adverse effects on the production, distribution and function of natural hormones, thereby affecting normal endocrine activity, health and quality of life of both humans and wildlife. The reproductive system is highly susceptible to EDCs due to it being controlled by an array of hormonal signals. The effects of EDCs on the male reproductive system include infertility, decreased sperm count, function and morphology, abnormal development of secondary sex characteristics, reproductive function and sexual behaviour as well as decreased libido. There are various sources by which EDCs enter the environment which include effluents from several industries (mining, agriculture, smelting, hazardous waste sites, manufacturing industries, etc.), sewage treatment effluents, urban and agricultural runoff and effluents which include natural and pharmaceutical chemicals excreted in the urine of humans and domestic livestock, pesticides, polychlorinated biphenyls, dioxins, plasticizers, surfactants, etc. Humans and animals can also be affected by EDCs by consuming food containing endocrine active substances. The growing concern regarding adverse effects due to EDC exposure of humans and wildlife, as well as the increased incidence of EDC contamination has prompted extensive research into the development and validation of screening tests to detect and monitor known EDCs and new substances with endocrine-disrupting capability. These screening tests involve assessing the effect of known and potential EDCs on reproductive function and development as well as  / hormone production. To assess the effect of EDCs on the reproductive system different methods are employed which include in vitro, in vivo and ex vivo methods. In vitro methods have been suggested as a suitable screening tool for EDC monitoring due to low costs, reduced animal usage, the use of standard and basic equipment as well as the ability to screen a large number of samples with multiple endpoints. Of the available in vitro methods, the minced testes method has been suggested as the most suitable method for screening EDCs and for this reason has been employed in this study. The aim of this study was thus to employ a minced testes method to screen samples for male reproductive toxicity using cell viability and hormone production (testosterone and estradiol) as endpoints.The first objective of this study was to optimize an in vitro testicular cell culture assay by determining both optimal luteinizing hormone (LH)  / concentration and incubation time needed for testosterone production. Testicular cell cultures were prepared and cells were treated with varying concentrations of LH (10, 1, 0.1, 0.01 and 0 mu/ml) and incubated for 4 hours and 20 hours. Testosterone production was evaluated for each incubation period. Testosterone production was significantly increased for both incubation periods at all LH concentrations tested as compared to the control. For both incubation periods, there was no significant difference in testosterone production between the different LH concentrations tested. From the data obtained, the 4 hour incubation period as well as the LH concentration of 10 mu/ml were selected as optimal for the testicular cell culture assay. The second objective of this study was to determine the effect of Tulbaghia violacea Harv. on the male reproductive system. T. violacea is a plant species indigenous to southern Africa and is used locally as a herbal remedy/medicine to treat several ailments. Cells were treated with varying concentrations of the T. violacea ethanol extract (with/without LH-treatment) and incubated for 4 hours. Hormone production and cell viability were evaluated. The results obtained from this pilot in vitro study demonstrated that the ethanol extract of T.violacea has androgenic properties by significantly increasing LH-induced testosterone production in mouse testes with no significant change in cell viability. The third objective of this study was to assess the effect of Sutherlandia frutescens(L.) R.Br and Artemisia afra Jacq. Ex Willd. on the male reproductive system. S. frutescens and A. afra are also plant species indigenous to southern Africa and used locally as a herbal remedy/medicine to treat several ailments. Ethanol extracts of each plant was prepared and cells were treated with varying concentrations of each extract (0, 156.25, 312.5, 625, 1250,2500 and 5000 &mu / g/ml) with or without LH-treatment and incubated for 4 hours. Cytotoxicity by LDH measurement and hormone production (testosterone and estradiol) were endpoints that were evaluated. The results obtained showed that the ethanol extracts of both plants are not cytotoxic to testicular cells and that A. afra decreases testosterone production at high concentrations. The fourth and final objective of this study was to assess the acute effect of four heavy metals, namely manganese, copper, cadmium and magnesium on the male reproductive system. These heavy metals are used extensively in manufacturing and mining industries. Cells were treated with varying concentrations of each metal salt (200, 100, 50, 25, 12.5, and 6.25  / &mu / M) with or without LH-treatment and incubated for 4 hours. Endpoints evaluated included cell viability, testosterone and estradiol production. The results obtained showed that manganese, cadmium and copper are highly toxic to testicular cells in vitro and therefore may potentially cause reproductive toxicity.</p>
|
16 |
The immune-modulating activity of Artemisia afraKriel, Yusra January 2010 (has links)
<p>This study shows that herbs can be effectively screened for potiential bio-activity using in vitro methods. Further studies will be needed to better explore Artemisia afra&rsquo / s effect on immunoregulation, particularly long term effects of the herb on the immune system and its effect on other disease states.</p>
|
17 |
The implementation of in vitro assays to screen environmental samples for male reproductive toxicityEbrahim, Mozaffar January 2010 (has links)
<p>Endocrine&ndash / disrupting compounds (EDCs) are exogenous compounds/chemicals which interfere with, or have adverse effects on the production, distribution and function of natural hormones, thereby affecting normal endocrine activity, health and quality of life of both humans and wildlife. The reproductive system is highly susceptible to EDCs due to it being controlled by an array of hormonal signals. The effects of EDCs on the male reproductive system include infertility, decreased sperm count, function and morphology, abnormal development of secondary sex characteristics, reproductive function and sexual behaviour as well as decreased libido. There are various sources by which EDCs enter the environment which include effluents from several industries (mining, agriculture, smelting, hazardous waste sites, manufacturing industries, etc.), sewage treatment effluents, urban and agricultural runoff and effluents which include natural and pharmaceutical chemicals excreted in the urine of humans and domestic livestock, pesticides, polychlorinated biphenyls, dioxins, plasticizers, surfactants, etc. Humans and animals can also be affected by EDCs by consuming food containing endocrine active substances. The growing concern regarding adverse effects due to EDC exposure of humans and wildlife, as well as the increased incidence of EDC contamination has prompted extensive research into the development and validation of screening tests to detect and monitor known EDCs and new substances with endocrine-disrupting capability. These screening tests involve assessing the effect of known and potential EDCs on reproductive function and development as well as  / hormone production. To assess the effect of EDCs on the reproductive system different methods are employed which include in vitro, in vivo and ex vivo methods. In vitro methods have been suggested as a suitable screening tool for EDC monitoring due to low costs, reduced animal usage, the use of standard and basic equipment as well as the ability to screen a large number of samples with multiple endpoints. Of the available in vitro methods, the minced testes method has been suggested as the most suitable method for screening EDCs and for this reason has been employed in this study. The aim of this study was thus to employ a minced testes method to screen samples for male reproductive toxicity using cell viability and hormone production (testosterone and estradiol) as endpoints.The first objective of this study was to optimize an in vitro testicular cell culture assay by determining both optimal luteinizing hormone (LH)  / concentration and incubation time needed for testosterone production. Testicular cell cultures were prepared and cells were treated with varying concentrations of LH (10, 1, 0.1, 0.01 and 0 mu/ml) and incubated for 4 hours and 20 hours. Testosterone production was evaluated for each incubation period. Testosterone production was significantly increased for both incubation periods at all LH concentrations tested as compared to the control. For both incubation periods, there was no significant difference in testosterone production between the different LH concentrations tested. From the data obtained, the 4 hour incubation period as well as the LH concentration of 10 mu/ml were selected as optimal for the testicular cell culture assay. The second objective of this study was to determine the effect of Tulbaghia violacea Harv. on the male reproductive system. T. violacea is a plant species indigenous to southern Africa and is used locally as a herbal remedy/medicine to treat several ailments. Cells were treated with varying concentrations of the T. violacea ethanol extract (with/without LH-treatment) and incubated for 4 hours. Hormone production and cell viability were evaluated. The results obtained from this pilot in vitro study demonstrated that the ethanol extract of T.violacea has androgenic properties by significantly increasing LH-induced testosterone production in mouse testes with no significant change in cell viability. The third objective of this study was to assess the effect of Sutherlandia frutescens(L.) R.Br and Artemisia afra Jacq. Ex Willd. on the male reproductive system. S. frutescens and A. afra are also plant species indigenous to southern Africa and used locally as a herbal remedy/medicine to treat several ailments. Ethanol extracts of each plant was prepared and cells were treated with varying concentrations of each extract (0, 156.25, 312.5, 625, 1250,2500 and 5000 &mu / g/ml) with or without LH-treatment and incubated for 4 hours. Cytotoxicity by LDH measurement and hormone production (testosterone and estradiol) were endpoints that were evaluated. The results obtained showed that the ethanol extracts of both plants are not cytotoxic to testicular cells and that A. afra decreases testosterone production at high concentrations. The fourth and final objective of this study was to assess the acute effect of four heavy metals, namely manganese, copper, cadmium and magnesium on the male reproductive system. These heavy metals are used extensively in manufacturing and mining industries. Cells were treated with varying concentrations of each metal salt (200, 100, 50, 25, 12.5, and 6.25  / &mu / M) with or without LH-treatment and incubated for 4 hours. Endpoints evaluated included cell viability, testosterone and estradiol production. The results obtained showed that manganese, cadmium and copper are highly toxic to testicular cells in vitro and therefore may potentially cause reproductive toxicity.</p>
|
18 |
The use of whole blood cell cultures as a model for assessing the effects of SeptilinTM on the immune system.Hoosen, Mujeeb January 2017 (has links)
Magister Scientiae - MSc (Medical BioSciences) / In the past three decades there has been a huge increase in the use of herbal medicine globally.
The active principles of these herbal medicines are mostly unknown with supportive evidence for
safety and efficacy very rare. SeptilinTM is a phytopharmaceutical formulation which is
recommended for the treatment and management of various infections. It has been claimed to
have immunomodulatory actions that potentiates the body's immune response. The
immunomodulatory activity of SeptilinTM has not been well investigated via appropriate in vitro
models. Therefore this study was undertaken to investigate the in vitro effects of SeptilinTM on
biomarkers of specific immune pathways by using WBC. Stimulated and unstimulated WBC
were incubated with the product. Enzyme linked immunosorbent assays were used to screen for
IL-6, IL-10, and IFN? as biomarkers for inflammation, humoral immunity, and cell mediated
immunity, respectively. Results show that the presence of SeptilinTM in LPS stimulated WBC has
no effect on the release of IL-6 and IFN? production but stimulated IL-10 production. SeptilinTM
in unstimulated WBC has no effect on the release of IL-10 and IFN? production but stimulatory
effects on IL-6 production.
|
19 |
The development and preparation of a quality control dossier for registration of Artemisia Afra capsules for the treatment of chronic Asthma by the South African health products regulatory authoritySekhonyana-Khetsekile, Mabolaeng January 2018 (has links)
Magister Pharmaceuticae - Mpharm / The aim of this study was to determine quality control specifications needed for a dossier and an investigator's brochure of A. afra capsules, which can be used to motivate the registration and clinical testing of A. afra capsules in chronic asthma. The specific objectives were: (1) to establish the minimum product quality requirements for registration of A. afra capsules, (2) to prepare and pharmaceutically characterize a capsule product of A. afra freeze dried aqueous extract (FDAE) suitable for registration, and (3) to identify pharmaceutical product quality aspects of an investigator's brochure (IB) that would be appropriate for use in motivating a clinical trial of A. afra capsules in chronic asthma.
|
20 |
The immune-modulating activity of Artemisia afraKriel, Yusra January 2010 (has links)
Magister Scientiae - MSc / This study shows that herbs can be effectively screened for potiential bio-activity using in vitro methods. Further studies will be needed to better explore Artemisia afra’s effect on immunoregulation, particularly long term effects of the herb on the immune system and its effect on other disease states. / South Africa
|
Page generated in 0.0788 seconds